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Behavioral, neuropsychological, and brain imaging research points to a dedicated system for processing
number that is shared across development and across species. This foundational Approximate Number
System (ANS) operates over multiple modalities, forming representations of the number of objects,
sounds, or events in a scene. This system is imprecise and hence differs from exact counting. Evidence
suggests that the resolution of the ANS, as specified by a Weber fraction, increases with age such that
adults can discriminate numerosities that infants cannot. However, the Weber fraction has yet to be
determined for participants of any age between 9 months and adulthood, leaving its developmental
trajectory unclear. Here we identify the Weber fraction of the ANS in 3-, 4-, 5-, and 6-year-old children
and in adults. We show that the resolution of this system continues to increase throughout childhood, with
adultlike levels of acuity attained surprisingly late in development.
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The ability to nonverbally represent number is shared across
species and across development (for reviews see Dehaene, 1997;
Feigenson, Dehaene, & Spelke, 2004). The foundational Approx-
imate Number System (ANS) that underlies this ability produces
abstract number representations (Barth, Kanwisher, & Spelke,
2003) that support arithmetic computation across the life span
(Barth et al., 2003; Barth et al., 2006; McCrink & Wynn, 2004).
The ANS is activated when adults perform symbolic number tasks
(e.g., Dehaene, Piazza, Pinel, & Cohen, 2003; Piazza, Pinel,
LeBihan, & Dehaene, 2007) and may even provide a foundation
for more sophisticated mathematics (Gilmore, McCarthy, &
Spelke, 2007). However, the ANS represents number only approx-
imately (Dehaene, 1997; Gallistel & Gelman, 2000), and the
imprecision of its numerical representations is radically greater in
infants than in adults (e.g., Pica, Lemer, Izard, & Dehaene, 2004;
Xu & Spelke, 2000).

Given that the ANS is thought to play an important role in math
learning (Booth & Siegler, 2006; Jordan, Kaplan, Locuniak, &
Ramineni, 2007), it is surprising that no research to date has
explored the full developmental trajectory of its representational
acuity. Here we tested ANS acuity in 3-, 4-, 5-, and 6-year-old
children and in adults, using psychophysical modeling to deter-

mine the finest numerical discriminations possible at each age. Our
findings reveal that the ANS does not attain full acuity until quite
late in development, long after children have begun formal instruc-
tion in mathematics.

The ANS differs from counting in that it produces inexact
number representations (Gallistel & Gelman, 1992; but see Zorzi
& Butterworth, 1999). A hallmark of the ANS is that the impre-
cision of its representations grows with the target numerosity, such
that the ability to nonverbally discriminate two quantities depends
on their ratio (Moyer & Landauer, 1967). This ratio dependence is
observed when adults estimate numbers of items (Halberda, Sires,
& Feigenson, 2006; Whalen, Gallistel, & Gelman, 1999), produce
target numbers of actions (Cordes, Gelman, & Gallistel, 2001;
Whalen et al., 1999), judge the more numerous of two arrays
(Barth et al., 2003), and estimate the results of arithmetic events
(Pica et al., 2004). Because of the inexactness of ANS represen-
tations, two quantities cannot be distinguished when the distance
between them is too small. The finest numerical ratio that adults
can consistently discriminate has been identified as 7:8. This limit
can also be described as a Weber fraction that measures the
smallest numerical change to a stimulus that can be reliably
detected. The Weber fraction is equal to the difference between the
two numbers divided by the smaller number; for example, 7:8 3
(8 � 7)/7 � .14. When asked to indicate the more numerous of two
simultaneously presented arrays containing 20–80 dots, French
adults’ Weber fraction is .12 and Amazonian adults’ Weber frac-
tion is .17; thus on average these adults could discriminate ratios
differing by about 7:8 (Pica et al., 2004).

Ratio-dependent numerical performance also reveals that preverbal
infants use the ANS, albeit with drastically less acuity than adults.
Six-month old infants discriminate arrays of 4 versus 8, 8 versus 16,
and 16 versus 32 dots, all of which instantiate a 1:2 ratio, but fail to
discriminate 8 versus 12 and 16 versus 24, which instantiate a 2:3
ratio (Xu, 2003; Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005).
The same pattern obtains in audition: 6-month-olds discriminate
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4 versus 8 and 8 versus 16 but not 4 versus 6 or 8 versus 12 tones
(Lipton & Spelke, 2003, 2004). Infants’ discrimination threshold
changes with development: 9-month-olds succeed with the 2:3 ratios
with which 6-month-olds fail, in both the auditory and visual domains
(Lipton & Spelke, 2003; Wood & Spelke, 2005; Xu & Arriaga, 2007).
The identical increase in acuity across sensory modalities suggests
that it is the ANS itself, and not the visual or auditory perception
systems, that is improving.

The aforementioned data show that ANS acuity increases over
the life span, with participants exhibiting a Weber fraction of 1.0
at 6 months, 0.5 at 9 months, and 0.14 in adulthood. However,
these studies leave a large gap in our understanding of the devel-
opment of nonverbal enumeration. It is known that preschool- and
early school-age children (the ages during which formal instruc-
tion in mathematics typically begins) show performance controlled
by numerical ratio, making more errors with close than with distant
numerical comparisons (Barth, LaMont, Lipton, & Spelke, 2005;
Huntley-Fenner, 2001; Huntley-Fenner & Cannon, 2000; Starkey
& Cooper, 1995; Temple & Posner, 1998). Estimates of numerical
acuity in 5-, 6-, and 8-year-olds using a numerical bisection task
suggest Weber fraction values in the vicinity of .26, intermediate
between the acuity of adults and that of infants (Droit-Volet,
Clément, & Fayol, 2003; Jordan & Brannon, 2006). An analysis of
children’s reaction times to determine the larger of two Arabic
numbers is also consistent with the proposal that the ANS affects
performance such that numerically near digits take longer to dis-
criminate (Sekuler & Mierkiewicz, 1977). This effect changes with
age throughout the school years, suggesting the possibility of
developmental changes in ANS acuity (Sekuler & Mierkiewicz,
1977).

Yet, no study to date has identified the finest numerical discrimi-
nations children can make, as none has used psychophysical methods
similar to those used with adults to identify children’s Weber fraction.
For this reason, the developmental trajectory of changes in ANS
acuity between 9 months and adulthood remains undescribed. For
example, it is not known whether numerical acuity rapidly asymptotes
during the first year of life (similar to stereoacuity; Held, Birch, &
Gwiazda, 1980), gradually increases throughout early childhood (sim-
ilar to executive function; Diamond, 2002; Zelazo, Craik, & Booth,
2004), or shows a discontinuous change when children master verbal
counting at around age 4 (similar to a vocabulary spurt; Carey, 1978;
Goldfield & Reznick, 1990). Furthermore, changes in ANS acuity
have implications for formal instruction in mathematics. Many math
curricula aim to tap children’s intuitions regarding “possible” or
“impossible” solutions to quantitative problems, encouraging children
to estimate numerical magnitudes before arriving at an exact answer
(Johnson, 1979; Levin, 1981). Given the widespread nature of such
teaching tools, it is surprising that children’s ANS acuity during the
early years of mathematics instruction has not been determined.

We presented 3-, 4-, 5-, and 6-year-old children and adults with
a nonverbal number discrimination task that did not permit count-
ing and that included controls for continuous variables that often
correlate with number. Varying the numerical ratio between stim-
ulus arrays allowed us to determine the Weber fraction of the ANS
for each age group and thereby to describe the function by which
the ANS reaches the adult state of representational precision. This
cross-sectional approach allowed us to determine whether numer-
ical acuity continues to develop over the ages tested. However, it
is important to note that this type of cross-sectional design might

obscure possible distinctions between a group trend and an indi-
vidual child’s developmental trajectory (e.g., individual children
might show discontinuous changes in numerical acuity, which
would be revealed only in a longitudinal analysis of changes in
individual performance over time). Our present goal was to deter-
mine whether ANS acuity continues to develop during the early
school years and to estimate the group trend in this developmental
trajectory.

Method

Participants

We tested five age groups with 16 participants per group: 3-, 4-,
5-, and 6-year-olds and adults. Summaries of mean age, age range,
and sex appear in Table 1. The adults were undergraduate and
graduate students at the Johns Hopkins University. The children
were recruited via mail and telephone, were mostly Caucasian,
mostly of middle-socioeconomic status, and mostly with parents
with some post–high school education. Each child was tested only
once. Thirty-one additional children were tested but not included
in the final analysis due to parental interference (2), failure to
complete the task (21), or equipment failure (8).

Materials

On each trial of the numerical discrimination task, two arrays of
between 1 and 14 items appeared side-by-side on a large video
screen (see Figure 1). Items varied in size but were otherwise
identical, and on each trial they were randomly chosen from 46
possible images of familiar objects (Table 2). Each array appeared
within a background frame demarcating “Big Bird’s Xs” on the
left side of the screen and “Grover’s Xs” on the right.

On each trial, participants heard a recorded voice prompting
them to select the greater of the two quantities (e.g., “Who has
more [pieces of pizza]?”). Labels and the carrier phrase “Who has
more” were recorded by a female native English speaker in a
child-friendly voice and were played over a centralized computer
speaker.

Procedure

Participants sat at a table approximately 150 cm from the screen
(viewing area 120 cm � 90 cm). The average object subtended 2°
of visual angle from this distance. The study began with the
recorded female voice saying, “Let’s play a game,” followed by
four practice trials. On practice trials the computer first displayed

Table 1
Description of Participants

Group Mean age Age range

Sex

Male Female

3 years 3.75 3.33–3.92 10 6
4 years 4.33 4.00–4.92 10 6
5 years 5.41 5.00–5.75 9 7
6 years 6.13 6.00–8.25 10 6
Adults 20.18 18.75–32.25 6 10

1458 HALBERDA AND FEIGENSON



Big Bird’s items for 2,000 ms accompanied by the labeling phrase,
“Here are Big Bird’s [pieces of pizza].” Next the computer dis-
played Grover’s items for 2,000 ms accompanied by the labeling
phrase, “Here are Grover’s [pieces of pizza].” Finally, both arrays
appeared simultaneously for 2,000 ms accompanied by the carrier
phrase, “Who has more [pieces of pizza]?” The carrier portion of
the phrase began before the items appeared; label onset was
synchronized to the items’ visual onset. Participants indicated
which character had the greater number of items via a color-coded
keyboard, pressing a red key to begin each trial, a yellow key to
indicate that Big Bird had more, and a blue key to indicate that
Grover had more.

The experimenter and, for children, a caregiver accompanied
participants into the testing room and sat approximately 100 cm
behind them so as not to influence performance. To maintain
participants’ motivation, the computer provided auditory feedback
on every trial (e.g., “That’s right!” for correct responses; “Oh,
that’s not right” for incorrect responses). Item type and item
position within the background frames were free to vary randomly
throughout practice and test trials. The 4 practice trials were
followed by 66 test trials, which were identical to the simultaneous
portion of the practice trials.

Displays were controlled either for average item size (area
correlated trials) or summed continuous extent (area anticorrelated
trials). For each ratio presented, on half of the trials the larger
numerosity had more total surface area (area correlated trials), and
on the other half the smaller numerosity had more total surface
area (area anticorrelated trials). Area anticorrelated trials con-
trolled for the total summed perimeter of the items and their total
surface area, two dimensions of continuous extent to which infants
have shown sensitivity (Clearfield & Mix, 1999; Feigenson, Carey,
& Spelke, 2002). These trials equated the total summed horizontal
and total summed vertical extent of the items in Big Bird’s and
Grover’s arrays. This procedure equated perimeter and anticorre-
lated surface area such that the array with the smaller number of
items had more total surface area. For example, on an area anti-
correlated trial on which Big Bird had 6 items and Grover had 12,
Grover would be the numerically correct choice by a ratio of 2
(12/6 � 2), but Big Bird would be the correct choice in total area
by an equal and opposite ratio (20,943 pixels/1,0471 pixels � 2).
Because the difference in total surface area varied with the numer-
ical ratio of the two arrays (as summarized in Table 3), the easier
the numerical ratio was to discriminate, the more wrong surface
area became. This, combined with consistent feedback, was in-
cluded to discourage the use of continuous variables as a cue.
Finally, on both area correlated and area anticorrelated trials,
individual item size varied to ensure that items in the less numer-

ous array were not all larger than those in the more numerous array
(see Figure 1).1

Unequal numbers of trials were presented from each ratio bin in
order to focus on more difficult ratios (ratio bin 1:2 � 2 trials,
2:3 � 2, 3:4 � 2, 4:5 � 2, 5:6 � 10, 6:7 � 10, 7:8 � 10, 8:9 �
14, 9:10 � 14). These numbers were initially chosen for adult
participants and so focus more heavily on difficult ratios (e.g.,
5:6–9:10). To ensure consistency, we used the same ratio distri-
bution for all ages.

Display time was adjusted for each age group through pilot
testing and was chosen to be long enough to allow participants to
view both arrays but short enough to prevent serial counting.2

Display time was 2,500 ms for 3-year-olds, 1,200 ms for 4-, 5-, and
6-year-olds, and 750 ms for adults. The winning side (Big Bird or
Grover), ratio presented, trial type (area correlated, area anticor-
related), item type, and absolute number of items presented varied
randomly across trials.

Results

To examine whether performance differed across age groups or
depended on numerical ratio, we entered each participant’s percent-
age correct for each ratio bin (1:2, 2:3, etc.) into a 5 (age group) � 2
(sex) � 2 (trial type: area correlated, area anticorrelated) � 9 (ratio)

1 Our method for anticorrelating area and equating the total summed
perimeter of the items in Big Bird’s and Grover’s sets relies on the
geometric fact that the areas of similar polygons are to each other as the
squares of any two corresponding segments. This fact allows us to rely on
the horizontal and vertical extent of the image files rather than measuring
each minute curve in the perimeter of each picture. Because any curved
area can be estimated by a series of connected polygons and because the
images used within each trial were scaled variants of a single image, the
total summed perimeter was precisely equated on each trial and the ratio of
areas was exactly opposite the ratio of the number of items.

2 Children’s verbal counting ability was assessed for the purposes of a
separate study using Wynn’s Give A Number task (Wynn, 1992) and
revealed that none of the 3-year-old children understood the Cardinal Word
Principle (Gelman & Gallistel, 1978) and so could not have used counting
to determine the numerosities of the sets irrespective of display time.Figure 1. Sample trial from the Who Has More task.

Table 2
Objects Used in Experiment 1, Reported According to the
Label Used

Bagels Chairs Hats Shovels
Balls Cherries Hearts Squirrels
Bananas Cookies Keys Strawberries
Bicycles Cows Ladybugs Teddy Bears
Blocks Crayons Leaves Tractors
Boots Cupcakes Pieces of Pizza Trains
Bottles Doggies Pigs Trucks
Bows Dollies Rings Umbrellas
Buckets Donkeys Sailboats Violins
Bunnies Elephants Sandwiches Wagons
Butterflies Flags School Busses
Cars Hammers Seashells

1459DEVELOPMENTAL CHANGE IN NUMBER SENSE ACUITY



repeated measures analysis of variance.3 These data are presented
in Figure 2, which plots percentage correct for each age group as
a function of ratio (numerosity of larger set/numerosity of smaller
set). There was a significant age group effect, with participants
performing better with increasing age, F(4, 70) � 28.891, p �
.001; a significant ratio effect, with participants performing better
with increasing ratio, F(8, 560) � 20.199, p � .001; and a
marginally significant effect of sex, with girls and women per-
forming slightly better than boys and men overall, F(1, 70) �
3.122, p � .082.

Regarding the effect of total area on participants’ numerical
discriminations, we observed a significant trial type effect, F(1,
70) � 6.138, p � .05. We investigated this effect via planned t
tests comparing each age group’s percentage correct on area cor-
related and area anticorrelated trials with chance (50%). Collaps-
ing across all ratios revealed that all age groups performed signif-
icantly above chance on both trial types, as summarized in
Table 4, but performance was slightly better on area correlated
trials. All age groups based their responses on number, not area,
though area had some effect on judgments.

We also observed a significant Trial Type � Ratio interaction,
as the difference in performance on area correlated and area
anticorrelated trials was larger for easier ratios than for harder
ratios, F(8, 560) � 2.62, p � .01. A significant Age Group �
Ratio � Trial Type interaction revealed that older children and
adults showed less differentiation in performance between area
correlated and area anticorrelated trials as a function of ratio than
did younger children. In particular 3-, 4-, and 5-year-olds per-
formed better on area correlated trials than area anticorrelated
trials with 1:2 ratio comparisons, whereas 6-year-olds and adults
showed little or no difference in performance with this comparison
ratio, F(32, 560) � 1.575, p � .05. Any effect of area was minor
in the experiment, however, as basing answers on area would have
resulted in performance that was significantly below chance, and
this was never observed.

Participants’ performance varied as a function of ratio (see
Figure 2). If participants were using the ANS to determine the
more numerous array, then percentage correct as a function of ratio
(collapsed across trial type) should be well fit by a computational
model of the ANS. Pica et al., (2004) examined performance on a
task similar to ours in adults and children from both a developed
country (France) and an indigenous culture (the Munduruku of
Amazonia) whose language lacks exact large-number words such
as “seven.” Pica and colleagues found that both groups’ perfor-

mance was well fit by a psychophysics model (Green & Swets,
1966; Moyer & Bayer, 1976) that models ANS representations as
“noisy” Gaussian random variables and numerical discrimination
as the subtraction of the two Gaussian random variables that
represent the numerosities of the two arrays.4 This model has a
single free parameter, the Weber fraction (w), which determines
the increase in percentage correct with increasing ratio. We rely on
this same psychophysics model, which has been argued to be a
parsimonious, psychologically plausible model of numerical per-
formance (Pica et al., 2004). This model has received further
support from neuronal data of monkeys performing a numerical
discrimination task (Nieder & Miller, 2004).

As has been observed in previous numerical discrimination
tasks (Pica et al., 2004), participants’ performance can fail to reach
100% correct because of a tendency to guess randomly on some
trials. As seen in Figure 2, this was the case for our 3-, 4-, and
5-year-old children. The simplest way to account for this tendency
computationally is to include a parameter that is a constant prob-
ability of guessing randomly on any particular trial (for additional
discussion of this approach see the supporting online materials of
Pica et al., 2004). This parameter lowers the model’s asymptotic
performance while retaining an accurate estimate of the Weber
fraction. We included this parameter in our model as follows:
where pguess is the probability of guessing randomly, perror is the
probability of being incorrect given the model, and chance is .5
multiplied by 100 to return a percentage.

percent correct � ��1 � pguess)(1 � perror) � pguess
� .5 ] � 100 (1)

As seen in Figures 3a and 3b and Table 5, the psychophysics
model provides an accurate fit to our data from 6-year-olds and
adults (adult R2 value � .93). Performance for 3-, 4-, and 5-year-
olds deviates from this model, however, because younger children
were at chance for more difficult ratios. Figures 3d and 3e show
that data from 3- and 4-year-olds exhibit a sigmoidal shape. The
likely cause is that the children ceased to rely on ANS represen-
tations for the hardest ratios and instead guessed randomly (e.g.,
3-year-olds asymptote at 53% for comparisons of ratio 1.25 and
lower). This pattern might also simply be a failure to discriminate
the numerosities involved on these more difficult ratio compari-
sons, but performance well above the least squares fit psychophys-
ics model for easier ratios near the elbow of the function (e.g.,
ratios 1.25, 1.33, and 1.5 for 4-year-olds) suggests that the failures
at more difficult ratios are aberrant and a result of “giving up” on

3 Results similar to those reported here were obtained from analyses of
reaction time, which was also recorded, and these data show no evidence
of speed–accuracy trade-off differences across ages (e.g., 3-year-olds were
both slower and less accurate than 4-year-olds). For purposes of psycho-
physical modeling, we focus our analyses on percentage correct.

4 In the psychophysics model, each numerosity is represented as a Gaussian
random variable (i.e., �2 and �1) with means n2 and n1 and standard
deviations equal to the Weber fraction (w) � n. Subtracting the Gaussian for the
smaller set from that for the larger set returns a new Gaussian that has a mean
of n2 � n1 and a standard deviation of w√n1

2 � n2
2 (simply the difference of two

Gaussian random variables). Percentage correct is then equal to 1 � error rate,
where error rate is defined as the area under the tail of the resulting Gaussian
curve computed as follows:

�
1

2
erfc � �n1 � n2�

�2w�n1
2 � n2

2�

Table 3
Controls for Continuous Extent on Area Anticorrelated Trials

Whole-number
ratio

Numeric ratio
(N2/N1)

Total
perimeter

Ratio of total
area (N1/N2)

1:2 2 Equated 2
2:3 1.5 Equated 1.5
3:4 1.33 Equated 1.33
4:5 1.25 Equated 1.25
5:6 1.2 Equated 1.2
6:7 1.16 Equated 1.16
7:8 1.14 Equated 1.14
8:9 1.13 Equated 1.13
9:10 1.11 Equated 1.11
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the task. These data points artificially pull the performance of the
psychophysics model down as it attempts to reduce the error
between the fit and these data points, resulting in a Weber fraction
that likely underestimates the actual acuity of these participants
(witness the low R2 values for these fits in Table 5).

To gain further accuracy in estimating the Weber fraction at
each age (especially for younger children), we also modeled per-
formance for each age group using a sigmoidal function fit by the
Levenberg-Marquardt algorithm. We relied on the following sig-
moidal equation:

y � lower �
�lower � upper

1 � e
inflection�x

rate (2)

This model should not be viewed as a psychologically plausible
model of the representations involved, unlike the psychophysics
model we use (Moyer & Bayer, 1976; Pica et al., 2004), but rather
as a method for obtaining the best possible fit to our data in order
to estimate the Weber fraction while controlling for participants’
tendencies to guess randomly. The sigmoid model has a greater

Figure 2. Scatterplots of percentage correct (�SE) on the Who Has More task as a function of ratio and trial
type for each group (chance � 50%). A: adults, B: 6-year-olds, C: 5-year-olds, D: 4-year-olds, E: 3-year-olds.

Table 4
Percentage Correct Compared With Chance (50%) Across All Trials for Each Age Group

Age group

Area correlated Area anticorrelated

Percentage correct

t p �

Percentage correct

t p �M SE M SE

3 years 61.7 3.1 3.741 .005 60.1 3.2 3.178 .001
4 years 64.4 3.0 4.838 .001 58.5 2.6 3.256 .005
5 years 70.3 2.7 7.525 .001 63.7 3.8 3.596 .005
6 years 79.8 3.5 8.537 .001 76.1 2.0 13.280 .001
Adults 87.7 1.2 32.039 .001 87.2 1.2 31.099 .001
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number of free parameters than the psychophysics model and thus
will nearly always provide a more accurate fit than the psycho-
physics model, but with reduced parsimony. From the sigmoidal
equation for each age group, the Weber fraction can be estimated
as the inflection point of the sigmoid (psychologically equivalent
to the midpoint between successful discrimination [upper asymp-
tote] and subjective-equality [lower asymptote]). As seen in Fig-
ures 3d and 3e and Table 5, the sigmoidal function provides an
accurate fit to our data from younger children (e.g., 4-year-olds R2

value � .98). Table 5 lists the estimated Weber fraction for each
age group from both the psychophysics model and the sigmoid
model along with the R2 values for the fit. These numbers are
also translated into a nearest whole number ratio (e.g., Weber
fraction of .25 � 4:5 ratio). As Table 5 shows, estimated Weber
fraction decreased with age, confirming that ANS acuity in-
creased across the age groups we tested. Whereas 3-year-old
children can accurately discriminate numerosities differing by a
3:4 ratio, 6-year-olds have sufficient acuity to discriminate numer-

Figure 3. Scatterplots of percentage correct (�SE) on the Who Has More task, combined across trial type,
as a function of ratio, presented with fits from a psychophysics model and a sigmoid model. A: adults,
B: 6-year-olds, C: 5-year-olds, D: 4-year-olds, E: 3-year-olds.

Table 5
Estimated Weber Fraction (w)

Age group

Psychophysics model Sigmoid model

w R2
Nearest whole

number fraction w R2
Nearest whole

number fraction

3 years .525 .502 2:3 .333 .829 3:4
4 years .383 .632 3:4 .240 .976 4:5
5 years .229 .785 4:5 .225 .938 5:6
6 years .179 .846 6:7 .199 .940 5:6
Adults .108 .926 9:10 .097 .988 10:11

Note. R2 values represent the agreement between the modeled fit and the data for the entire function (see Figure 3).
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osities differing by a 5:6 ratio, and adults’ acuity in our sample was
as high as 10:11. Using a numerical discrimination task similar to
ours, Pica et al., (2004) estimated untrained French adults’ Weber
fraction to be .12 or a 9:10 ratio. The extent of individual differ-
ences in Weber fraction in adults and children remains to be
determined, but our estimate and that of Pica et al., suggest that the
average acuity in adults from educated numerate cultures is in the
range of 9:10 or 10:11.

In Figure 4 we have plotted estimates from both models
alongside estimates from the developmental literature on in-
fants’ numerical acuity (Lipton & Spelke, 2003; Xu & Spelke,
2000). These estimates have been modeled by least squares fit
to determine the developmental trajectory of the increasing
acuity of the ANS (i.e., decreasing Weber fraction). These
suggest a logarithmic decrease in Weber fraction throughout
childhood,5 with adultlike levels of numerical acuity being
attained sometime during the preteen years.

Discussion

Although children between 3 and 6 years old have already
begun formal instruction in mathematics, the present results show
that the acuity of the ANS is still developing during this time.
Indeed, the sharpening of the ANS does not appear to be complete
until early adolescence. Given the central role this system plays in
supporting mathematical intuitions, this protracted period of de-
velopment highlights the importance of coming to understand the
effects of changes in ANS acuity on math learning and achieve-
ment (Booth & Siegler, 2006; Jordan et al., 2007).

What causes the ANS to increase in acuity? Although some of
the sharpening of this system may be due to simple maturation
of the neural circuitry subserving the ANS, recent evidence sug-
gests that experience can also affect its development. Practice at
numerical discrimination appears to increase acuity in children
with math learning disabilities (Wilson, Revkin, Cohen, Cohen, &
Dehaene, 2006). After approximately 8 hr of practice spanning 5

weeks on a computer game designed to engage the ANS, 7- to
9-year-old children showed improvement in both symbolic and
nonsymbolic numerical tasks. Continued engagement in numerical
discrimination throughout childhood may therefore contribute to
the increase in acuity we observed in normally developing chil-
dren. This suggests the intriguing possibility that subpopulations
that do not frequently engage in numerical discrimination might
show increasingly reduced acuity with age relative to individuals
undergoing formal education. Existing data are consistent with this
hypothesis. Although Pica et al., (2004) stressed the similarity in
the numerical discrimination abilities of their French and Mundu-
ruku participants, Munduruku adults’ Weber fraction was esti-
mated to be .17 (approximately 6:7), whereas French adults’ was
estimated to be .12 (approximately 9:10). This divergence could
plausibly be the result of differences in day-to-day engagement in
numerical discrimination. Training studies in normally developing
children and adults will be helpful in determining whether practice
with numerical discrimination leads to increases in acuity.

Changes in working memory capacity and executive functioning
may also affect numerical discrimination. There are improvements
in both spatial and verbal working memory in the preschool and
early elementary school years (for a review, see Cowan, 1997), as

5 We have included logarithmic fits (in fact, negative ln fits) because
these are perhaps more familiar to some readers. However, the data are
more accurately fit by a power function with an exponent of �.55 (e.g., for
previous data points from the literature and points from the current sigmoid
model the least squares power function fit is 14.871x�.5535, R2 � .9488).
The power function has the psychologically sensible behavior of predicting
asymptotic performance to be a Weber fraction 	 0 (as opposed to a
negative ln function that would allow for psychologically meaningless
negative values for the Weber fraction as seen in the trend lines of Figure
4). The power function is the most likely group trend given the current data
and should be used in all future studies. The logarithmic trends in Figure 4
are given solely for ease of communication with readers more familiar with
these functions.

Figure 4. Scatterplot of the estimated Weber fraction for each age group from both the psychophysics model
and the sigmoid model, combined with two estimates from the literature on infant Weber fraction displayed as
a function of age. The estimated developmental curves are logarithmic least squares fits.
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well as in aspects of executive functioning such as inhibition and
cognitive flexibility (Espy, Kaufmann, McDiarmid, & Glisky,
1999; Happaney, Zelazo, & Stuss, 2004). These factors correlate
with math achievement in tasks that focus on symbolic and explicit
mathematical reasoning (Espy et al., 2004; Gathercole & Picker-
ing, 2000; McClelland, Acock, & Morrison, 2006; McClelland et
al., 2007). In our task, although working memory and other exec-
utive functions were likely needed to maintain multiple arrays in
memory and to focus on the dimension relevant to the task (i.e.,
number rather than area), differences in these factors were mini-
mized by lengthening the display times for younger children.
Nonetheless, an important future direction is to determine how
developmental changes in these nonnumerical abilities affect de-
ployment of the ANS.

Orthogonal to changes in ANS acuity, we also found that 3- and
4-year-old children exhibited an increased likelihood of guessing
randomly, especially on harder numerical comparisons. Because
we presented the identical task and identical numerical ratios to all
of our participants, task difficulty varied considerably with age.
For adults, most of the numerical discriminations we presented
were easy. For 3-year-olds, most of the discriminations were hard.
It is possible that the high rates of guessing shown by the youngest
children resulted from general discouragement in the face of so
many hard problems. Developmental change in executive function
is another likely contributor to this difference across age groups
(Happaney et al., 2004). Six-year-olds remained vigilant and at-
tempted to respond correctly on the most difficult discrimination
trials (such as 9:10), even though the acuity of their ANS sup-
ported a level of accuracy of only 62% correct. That they remained
vigilant is seen in Figure 3, where percentage correct on difficult
ratios for this age group did not deviate from the predictions of the
psychophysics model. Future studies may rely on a staircase ap-
proach that tailors the ratios presented to focus on a level of
difficulty appropriate for each child (e.g., between 1:2 and 5:6 for
3-year-olds). Such an approach may result in lower guessing rates
for younger children. It may not, however, reveal considerably
different estimates in ANS acuity from those reported here, be-
cause the sigmoid model used here allowed us to control for rates
of random guessing while estimating acuity. Still, the present
cross-sectional data provide developmental milestones of ANS
acuity that can guide future investigations into nonnumerical con-
tributors to children’s performance in numerical tasks.

Our task was designed to neutralize nonnumerical correlates of
number by varying the degree to which number and both area and
contour length were correlated across trial types. However, it is
important to note that we used only a single task to estimate
numerical acuity, and we did not measure any potential increases
in acuity for any nonnumerical dimensions (e.g., changes in the
ability to discriminate differences in surface area). Without such
measures, it remains possible that the developmental changes
identified in the present experiment are the result of more general
developmental changes in magnitude representations, as opposed
to changes that are specific to numerical representations. Previous
research with both children and nonhuman animals suggests that
the representation of numerical magnitude may rely on a format
also shared by temporal magnitude (Brannon, Suanda, & Libertus,
2007; Feigenson, 2007; VanMarle & Wynn, 2006; Walsh, 2003)
and perhaps by continuous extent (Brannon, Lutz, & Cordes, 2006;
Feigenson, 2007; Walsh, 2003; Zorzi, Priftis, & Umilta, 2002).

Whether number, time, and space all share a common representa-
tional format remains a question of great theoretical interest. The
developmental changes in number discrimination that we describe
here provide what we hope will be a useful comparison point for
future work investigating developmental changes in the discrimi-
nation of time, area, volume, and other magnitudes.

In summary, the ability to nonverbally approximate number
plays a role in quantitative reasoning throughout the human life
span, even after the ability to represent exact integers is attained.
Cognitive psychology and cognitive neuroscience have made
much recent progress in understanding this ability. However, little
research has addressed the development of the ANS after infancy.
Here we show that the acuity of the ANS continues to increase
between ages 3 and 6 years and does not reach adultlike levels
until some time during the preteen years. The protracted nature of
ANS development, spanning the period when symbolic mathemat-
ical instruction begins, has implications both for math education
and for our understanding of the interplay between individual
experience and the “number sense.”
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