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INTRODUCTION 
We all have an approximate sense for numbers. T hat is, we have experiences 
of estimating of how many vo ices we hea r or stars we see, and have 
experiences of ordinal re lation such as judg ing that the number of voices we 
hear right now is fewer than the number of stars we see in the sky ri ght 
now . The sense of number that supports these kinds of ex periences is quite 
immediate (in perception) and primitive (i.e., operating from birth and serving 
as a foundation on which we lea rn about the world as understood through 
numbers). We share thi s primitive sense of number with othe r an imals (i.e., 
it has been measured in nonhuman primates, mammals more broadly , birds 
and fi sh; e.g., Cantlon & Brannon, 2006; Hauser, Tsao, Garcia, & Spelke, 
2003; Meek & Church, 1983; N ieder & Mil ler, 2004), with babies from birth 
(Izard , Sann , Spelke, & Streri , 2009), with individuals from every human c ul -
ture (NB, even those with no written mathematics of any kind; e .g ., Dehaene, 
Izard , Spelke, & Pica, 2008 ; Frank , Eve rett , Fedorenko , & Gibson, 2008; 
Gord on, 2004; Spaepen, Coppola, Spelke , Carey, & Goldin-Meadow, 20 11 ), 
and with every human-like mind that has eve r wa lked the face of thi s earth 
(e.g., the painters of the Chauvet cave and Jesus of Nazareth). 1 

The portion of cogn ition that generates these ex periences of approx imate 
number has been call ed an "approx imate number system" (ANS). It is 

I . Bu t note that homology has yet to be demonstrated-and, a pruden t theori st might bel that the 
number sense is a case of convergent evolution in l'i sh and humans or insec ts and humans given 
that we know or so lillie at the system's neuroscience sca le that would current ly count as homol -
ogous among these organisms (special thanks to A lvaro Mailhos and Dave Geary l'or di scuss ions 
and inspiration surroundi ng thi s point) . 
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generated by neurons in the intraparietal sulcus (I PS) and area latera l intrapar-
ietal (LIP) cortex (Nieder, 2005; Nieder & M iller, 2004; Piazza, Izard, Pinel, 
Le Bihan, & Dehaene, 2004: Ro itm an, Brannon , & Platt , 2007) . It is an evo-
lu t ionari ly ancient and prim iti ve system ror numerica l thought , and yet, sur-
pri singly, individual difrerences in the acc uracy and prec ision o f these 
approximate number representations relate to our performance in symboli c, 
rormal , school mathemati cs (ror review, Feigenson , Libertu s, & l-lalberda , 
20 13; but see De Smedt , Noe l , Gi lmore, & A nsari , 20 13). 

M uch of the ev idence that supports our current understanding or the ANS is 
rev iewed in other chapters w ithin thi s vo lume (e.g. , Cantl on, thi s vo lume; 
Starr & Brannon, thi s volume; vanM arle, thi s vo lume) , so we try not to dupl i-
cate those here. Instead , our aim is to describe the psychophysical model 
describing ANS representa tions and their prec ision ( i.e., the Weber rraction 
and related concepts) and to suggest a reason why thi s precision may diller 
across observers. We' ve organ ized the chapter into three maj or sec tions. We 
beg in by disc uss ing the criti cal ANS behavioral signatures, including internal 
confidence, ind iv idual dillerences, and ra tio dependence. Subsequentl y, we 
rev iew the psychophys ical model that accounts for these signatures, includ ing 
a discuss ion on the nature of the Weber rraction (11'), which we conceptuali ze 
as a scaling factor that determines the prec ision of all A NS representations. 
Fi nall y, we elaborate on thi s model and argue that the ANS 's key rol e is in 
provid ing " internal confidence" to the observer, ra ther than the absolute num-
ber of items in a scene. 

BEHAVIORAL AND NEURAL SIGNATURES OF THE ANS 
The ANS has been extensively studied, and there are many well -established 
signatures of its use (see following secti ons). Here , we rocus on three behav-
iora l signatures that we believe are centra l to the proper understanding of the 
ANS : the internal confidence generated by decis ions about approx imate num-
ber; indiv idua l cli rrerences in ANS perrormance; and the ellect of numeri ca l 
rati o on acc uracy , response time, and internal conridence. 

The heart o f the ANS (and the psychologica l experi ences or number that it 
generates) is its ordinal and approx imate character. Consider the images in 
Figure 12- 1 (NB , the ANS is multimoda l, e.g., N ieder, 201 2, and prov ides a 
sense or number for both vo ices heard and stars seen , but our examples rocus 
on v ision for ease of demonstration; Baker & Jordan, thi s vo lume). The reader 
wi ll li kely find it qui te simple to judge that there are more black clot s than 
white clots in Figure 12- 1 a, even with onl y a brief glance. It is also likely that 
dec id ing whether there are more black cl ots than white clots in Figure 12- 1 b is 
a bit more difficult. Irrespec ti ve or the reader 's answer to thi s particul ar 
' 'more" questi on, we inv ite you to reflect on your internal confidence for 
any ordinal guess you might make with respec t to Figures 12- 1 a and 12- 1 b. 
For which fi gure, 12- la or 12- lb, would you fee l more conrident about your 
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(a) 

(b) 
FIGURE 12-1 Qui ck. Are more or I he dois black or while? You should find (a) to be easier, 
quicker, and thai yo ur inlernal confidence in your dec is ion should be higher. 

answer, afte r a brief glance? Which fi gure are you more likely to make a 
mistake on? 

We expect that the reade r feels more confident abo ut hi s or her guess for 
F igure 12- 1 a (i .e ., "B lack has more !") than for F igure 12- I b (i.e. , "Black has 
more???") . Experiments in multiple labs have found that thi s difference in 
internal confidence (and a corresponding increase in errors and response time 
as trial s become more difficult) is not simply a result of there being more dots 
in Figure 12- 1 b than 12- 1 a, nor of mi ss ing a few dots or counting a dot twice 
by acc ident (Cordes, Galli ste l, Gelman , & Latham, 2007 ; Cordes , Ge lman, 
Ga lli ste l, & Wha len, 2001) . As expanded on in the followin g sections, we 
believe that a sense of internal confidence for number thoughts (e .g., 
F igure 12- 1 a resulting in higher confidence than Figure 12- 1 b) is the most 
importan t psycholog ical expe ri ence that the ANS g ives ri se to- rather than 
experiences of any particular cardina lity (e.g., " that looks like around 
18 dots")- and that the ANS and all other magnitude dimensions (e.g ., time, 
length , loudness, brightness; Lo urenco, thi s vo lume) are in the business of 
supporting ord ina l compari sons and not absolute judgments (i. e., more-black-
dots, and not approximate ly-7-b lack-dots*) .Z 

2. A fortiori, esl imal ion (e.g., ' ' I hal looks li ke around 16 dols") is a case or rei alive, ord ina l compar-
ison (see also Laming, 1997) and proba bl y always invo lves comparisons 10 inlernal slandard com-
paralors (see, e .g., Izard & Dehaene, 2008; Sulli van & Barner, 20 13). A more thorough defense of 
I hi s view is beyond I he scope of thi s c hapter, bul we hope I hal wo rk in progress, as well as a book in 
progress, wi ll be able 10 explore ihese issues in grealer dela il over I he coming yea rs. 
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One important lesson that can be drawn from view ing Figures 12- 1 a and 
12- 1 b is that the internal confidence you ree l when viewing them arises 
incred ibl y rapid ly, probably even before you have determined your answer 
to the number question (e.g. , " Hmm ... B lack has morel") . As a result , internal 
con fi dence, or lack thereo f, is fe lt throughout the " Hmm . .. " peri od leading up 
to your dec ision, and inf"orms and guides your evidence-gathering procedures 
(e.g. , adjusting the parameters or an internal size normali zation algorithm , 
inspec ting with greater scrutiny the visuall y crowded regions of the image). 
For example, pro longed exposure to low con fidence trial s impairs subsequent 
discrimination performance, whereas ex posure to high confidence trial s 
improves it (Od ic, Hock, & Halberda, 20 12; Wang, Od ic. Halberda, & 
Fe igenson, under rev iew) . M uch or the recent work in our lab demonstrates 
that internal confidence is con tinuous and quantitatively rich (i.e., not merely 
"high , low, or med ium" ), and may be the primary source for the individual 
differences in numerical estimation and discrimination performance in tasks 
that measure our abilities to estimate and compare numeros ities (Od ic et al., 
20 12; Wang et al., under rev iew). T his sense of in terna l confidence has yet 
to be fully expl ored empiri ca ll y, and thi s chapter serves as an introd uction 
to ideas that are curren tl y in development. 

T he second important lesson to draw from viewing Figures 12- 1 a and 12- 1 b 
is that different observers w ill experi ence different levels of internal confidence 
for these same numeri ca l judgments. If you happen to have children nearby as 
you read thi s, we encourage you to ask them to give you their opi ni on about 
Figures 12- l a and 12- l b- whether there are more black dots or white clots in 
each figure. You shou ld find that they take longer to answer than you would 
take (try to convince them to answer w ithout expli cit verbal counting), but that 
they, li ke you, answer more quick ly for Figure 12- 1 a than Figure 12- 1 b. 

Indi v idual and developmental cli llerences are also found in ANS disc rimi -
nation: individuals vary w idely in both the speed and accuracy of dec iding 
whether more of the clot s are black or white, and ANS speed and accuracy 
graduall y improve over development (Ha lberda & Feigenson, 2008; 
Halberda , Ly, Wilmer, Naiman, & Gennine, 20 12; Od ic, Libert us, 
Fe igenson, & Halberda, in press; Piazza et al. , 20 I 0). These individual and 
developmental dif"ferences are usual ly measured through Weber fracti ons 
(w), a key concept describing the acuity or prec ision or an indi vidual 's 
ANS . For ex ample, w has been found to be impaired in indi v iduals who strug-
gle w ith dyscalcu lia, or math learning disabilit y (MLD; Mazzocco, 
Fe igenson, & Halberda, 20 I I ; Piazza et al., 20 I 0). In what follows, we dis-
cuss the nature of the Weber frac ti on and the ANS psychophys ica l model, 
and subsequentl y return to unify ing it with the concept or internal confidence . 

The third importan t behavioral signature of note is that children and 
adults should also answer faster and provide more accurate responses for 
Figure 12- 1 a than Figure 12- 1 b. The faster and more accurate answering for 
Figure 12- 1 a compared to 12- 1 b is a uni versa l behavioral signature that every 
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organism sho ws when relying on approximate number representations (i .e., you, 
us, children, rats , pigeons) . A ll creat ures so far tested have shown this kind of 
ratio-dependent responding (i.e., Weber 's law) , where we are both faster and 
more accurate for "easier" numerical comparisons , and our performance degrades 
as the ratio between the two numbers being compared moves closer to l (e.g., the 
numerositi es in Figure 12- 1 bare closer to a ratio of I where the two sets of dots 
wou ld be equal in number and there wou ld , therefore, be no correct answer; 
Figure 12- 1 a ratio = 18/8 = 2.25; Figure 12- 1 b ratio = 18/ 16 = 1.125) . 

Internal confidence, individual differences, and ratio dependence are three 
signatures that are of great value for promoting our understanding of the 
approximate number system. Research scientists are relying on these patterns 
to he lp inform their understanding of the functioning of the ANS. All formal 
models of ANS representation must strive to provide a detailed account for 
why these patterns have been observed in every study of ANS performance 
yet published and in every anima l yet tested. Why do these patterns emerge? 
Like the flow of sunspots across the face or the sun was for Galileo (i.e. , and 
the systematic relationship between the time of year and the angle of their tra-
versal), the elegant systematicity or these response time and error distributions 
in numerical tasks is a coded key whose proper description will help unlock a 
door unto our more accurate understand ing of numerical cogn ition and the 
foundat ions of our numerical thoughts. 

In the remaining sections of this chapter, we review a psychophysica l 
model that acco unts for ratio-dependence, interna l confidence, and individual 
and developmental differences in the ANS. But researchers have a lso identi -
fied numerous other signatures of interest; in the end, a sufficient theory of 
our approximate number representations should be able to provide exp lana-
tions fo r all the observed patterns in the data, and not just a subset of them. 
Due to space constraints, we can only briefly review the li st of other relevant 
s ignatures: 

• Longer response times and higher error rates for younger observers and for 
observers who strugg le with a math learning disability; each discussed in 
connect ion with Figure 12-l. 

• Multimodal representations of number that include vi sion, audit ion, lacta-
tion, as well as serial and parallel presentation of coll ections through these 
modalities ; e.g., the "voices heard and stars seen" mentioned previously 
(Izard et al. , 2009; Lipton & Spelke, 2003; Nieder, 20 12). Simi larly, 
cue-combination effects of combining ev idence across two or more mod-
alities; e .g ., the increased confidence we feel in our estimate of the number 
of people who are around us when we can both hear and see them talking 
around the campfire (Jordan & Brannon, 2006; Raposo, Sheppard, 
Schrater, & Church land, 20 12). 

• Relationships between physical parameters of stimulus presentation and a 
resulting sense for numerosity , including dimensions such as visua l 
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densi ty (Dakin, Tibber, Greenwood, Kingdom, & Morgan, 20 II ; Durgin, 
1995) and phys icall y intermi xing or separating sets of stimuli (Gebuis & 
Reynvoet, 20 12; Price, Pa lmer, Balli sta, & Ansari, 20 12; Zosh, 
Halberda, & Fe igenson, 20 I I) ; that is, how do our sensory systems take 
perceptual ev idence and translate thi s ev idence into a numeri ca l thought? 

• Relations across various psychological dimensions that may share 
representational resources or formats with approximate number, such as 
temporal duration or surface area (Hurewit z, Ge lman, & Schni tze r, 
2006; Od ic et a!. , in press) , as we ll as effec ts of forming mapp ings across 
these various dimens ions, such as longer lines or tone durations mapping 
naturally to larger numerositi es, including the SNARC (spat ial- numerical 
assoc iation of response codes) e!Tec l wherein observers lend to associate 
phys ica l space from left to ri ght with a mental number line ordered from 
small numbers on the len to larger numbers on the right (Gevers, 
Yerguts, Reynvoet, Caessens, & Fias, 2006: Wood , W illmes, N uerk , & 
Fischer, 2008), 

• Effec ts of memory and executi ve control for approx imate number repre-
sentati on and adjusting to the varying contex ts or dillerent display para-
meters (G i I more et a!. , 20 13; Pail ian, Libert us, Fe igenson, & Halberda, 
under rev iew). 

• The relation between perceptual effects or numeros ity and later cogniti ve 
efTects of numeros ity, such as the effec ts or clustering or Gestalt grouping 
in a visual display (lm, Zhong, & Halberda, 201 3); visua l adaptation 
e!Tects (Burr & Ross, 2008; Ross & Burr, 20 I 0) ; vi sual and auditory pars-
ing of indi v idual items that form a co llection (Franconeri , Bemis, & 
A lvarez, 2009; Ha lberda, Sires, & Feigenson, 2006). 

• Mappings between nonverbal approx imate number representations and 
formal math words and symbols; e.g., that " around ten" can be an appro x-
imati on (Barth, Starr, & Sulli van, 2009; Le Corre & Ca rey, 2007 ; 
Mundy & Gilmore, 2009; Od ic, Le Corre. & Halberda, under rev iew; 
Su lli van & Barner, in press), and mappings between approx imate number 
representations and spatial understandings or a number line; e.g., that 
"6 > 5" picks out an ordinal direc tion on the mental number line 
(Booth & Siegler, 2006; Op fer & Sieg ler, 2007; Sieg ler & Booth, 2004). 

• Neuropsychologica l ev idence, such as ev idence for vari ous de fi cits that 
emerge from brain damage, that inform which brain regions support our 
ANS representation and what other psychologica l functi ons may be sup-
ported by those regions (Dehaene & Cohen, 1997), as we ll as imaging 
studi es or the human brain that al so help to address these questions; e.g ., 
such studies suggest that overlapp ing bra in regions support ou r representa-
ti ons or approx imate numbers and approx imate areas (Castelli , Glaser, & 
Butterworth , 2006; Pinel, Piazza, Le B ihan. & Dehaene, 2004) . 

• Neurophysiologica l recordings that prov ide data to fuel our theori zing 
about the represen tat ional format and implementations code for numerica l 
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representations as well as information about how such codes may cli!Ter 
across vari o us bra in reg ions (e .g., IPS versus LIP; Niede r, 2005; P iazza 
et a l. , 2004; Ro itman et al., 2007). 

All of these sources of ev idence are important a nd shou ld eventuall y inform 
theories of approximate number representati on. 

A PSYCHOPHYSICAL MODEL FOR ANS REPRESENTATIONS 
The key to understand ing rati o dependence, individua l and developmental dif-
ferences, and intern al confidence (as well as the other signatures described 
prev iously) is understanding the psychophys ical mode l of the ANS and cor-
rec tly understand ing what a Weber fraction is . 

W hen we just g lance at a pic ture, even without an ex plic it task, our ex pe-
rience of Figure 12- 1 a feels inherentl y comparati ve (e .g., " there are more 
black dots!"); that is, it would be very surpris ing if someone glanced at 
F ig ure 12- l a and reported, "Well , I see one spec ific clot on the bottom ri ght" 
(implying that " I see nothing e lse on the page worth reporting") or " I see 
approximate ly 18 black clots and nothing else worthy of note ." Displays like 
Figures 12- 1 a and 12- 1 b have been used to measure human and animal 
numerical discr iminati on performance (i.e ., how acc ura te we are at determin -
ing which co lor has more dots after just a quick g lance); such tasks are ca lled 
"di scrimination tasks. " 

To mode l our acc uracy (and internal confidence) for judgme nts that 
engage the approximate number system (i.e., the "more" judgments we made 
for F igures 12- 1 a and 12- 1 b) , we must first spec ify a model for the underlying 
ANS representations. It is generally agreed that our internal response to a 
nume rosi ty in the world is a di stri buti on of activation on a mental " number 
line ." These di stributions are inherentl y vari able (sometimes ca lled " no isy") 
and do not represent number exactly or di scre te ly (Dehaene, 1997; 
Galli stel & Gelman , 2000). T hi s means that there is some error each time they 
represent number, and thi s error can be thought of as a spread of act ivati on 
around the number being represented . The menta l number li ne is often mod-
eled as having linearl y increas ing means and linearly increas ing standard 
deviations (Galli stel & Gelman, 2000). 3 In such a format, the representati on 
fo r, e.g., approx imately-? is a no rm al (Gaussian) probabi lity density function 
that has its mean at 7 on the mental numbe r line and a smooth degradati on to 
e ither side of approx imate ly-?; hence, approx im atel y-6 and approx imately-8 

3. The mental number line has also been conceived of as loga ri th micall y organized with constant 
standard deviation (Dehaene, 2003). Either thi s format or the linear one in Figure 12-2a results in 
the ratio-dependent performance thai is the hallmark of the ANS . We rely on the linear formal , as 
it generates fairly intuiti ve graphs (e .g., Cordes et al. , 200 I; Gall istcl & Ge lman, 2000; Meek & 
Church, 1983, Wha len el a l. , 1999). 



312 PART I Ill Theore ti c,ll ,ulcl [ volutionMy r o uncla ti o ns 

on the mental number l ine are also highly activated by instances or sevenness 
in the world. 

In Figu re 12-2a, we have drawn curves that dep ict the ANS represen ta-
tions for numeros ities 4- 10. You can thin k or these curves as representing 
the locati on and spread or acti vity generated on a mental number l ine by a 
part icular co ll ec tion or i tems in the world w ith a diffe rent bump for each 
numerosi ty you m ight ex perience (e.g., 4, 5, or 6 black clo ts). Ra ther than acti-
vating a single disc rete va lue (e.g., 7) , the curves are meant to ind ica te that a 
range of act iv ity is present each li me a CO llec ti on Of (e.g., 7) items IS 

presented. 
In fact, the bell -shaped, or Gaussian, ANS representat ions depicted in 

Figure 12-2a are more th an just a theoreti ca l fantasy; '' bum ps" like these have 
been observed in neuronal record ings or the cortex o r awake behav ing 
monkeys as they engage in numerica l d iscri m inati on tasks (e.g., shown an 
array or 7 clo ts, neu rons that are preferenti all y tuned to representing 
approx imate ly -7 are most highly activa ted, wh ile neurons tu ned to 
approx imately-6 and are also fairl y acti ve , and those tuned 
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FIG URE 12-2 (a) The psychophys ica l modd descr ibes ANS represenlalions as Gauss ian d islri -
bulions along an ordered numbe r line. As discussed in ihc lex I , ihc Weber rrac lion is bcsl conccp-
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to approximate ly-5 and approximate ly-9 are active on ly s light ly above the ir 
resting sta te; N ieder, 2005; Nieder & M ill er, 2004). These neurons are found 
in the monkey brain in roughly the same reg ion of cortex that has been found 
to support approximate nu mber representat ions in human subjects in fMRI 
studies (Piazza e t a l. , 2004) . 

It is important to keep in mind that thi s type of spreading ac ti va tion is 
common throughout the cortex, and it is not uniq ue to ANS representations. 
For example, we (and a ra t) wi II also have ne urons in our hi ppocampi that 
are preferentia ll y tuned to part icular locati ons in our offi ce/bedroom/cramped-
bu t-well -vent ilated-cage that represent our position in space as we move 
around , with a spreading activati on quite s imil ar to the spreading ac ti vati ons 
depicted in F igure 12-2a Uust with the spread occurring in the two-
dimensional mental space o f our floor plane rather than the one-dimensional 
space of nume rosity; Fyhn, Molden, W itter, Moser, & Moser, 2004; 
Hafting, Fyhn , Molden, Moser, & Moser, 2005; Moser, Kropff, & Moser, 
2008). That is, approx imate number representati ons obey the same princip les 
of " noisy" approximate cod ing that operate quite broad ly throughout the 
mind/brain . 

This point is worth hig hlight ing because it inv ites you to recog nize that, 
whatever theory you end up preferring fo r approx imate number system repre-
sentati ons, that theory m ust make use of constructs that can apply quite 
broadl y across cortical and subcortica l representations. The differences in 
response times , error rates, and internal confide nce that we noted during our 
di scuss ions of F igures 12- 1 a and 12- 1 b have also been observed for the vast 
majority of the psycho log ica l dimensions that humans and other animals rep-
resent (e.g ., scalar variability and rati o-depe ndent performance for time, num-
be r, distance, fl avor concentrati on, e lectri c shock, perceived we ight, density, 
vi scos ity; Cantlon, P latt, & B rannon , 2009; Gesche ide r, 1997; Odic, Im, 
E is inger, Ly , & Halberda, under rev iew). Many psycho logical dimensions re ly 
on codin g schemes based on scalar vari ability and internal confidence (signal 
fid e li ty) that operate s im il ar ly to ANS representation. 

In F igure 12-2a, as the num ber of items in an array presented to an 
observer increases from 4 to I 0 , the standa rd dev iati on o f the bell -shaped 
curves that represent the nu me ros ity increases, resulti ng in a fl attening and 
spreading of the ac ti vat ions (note the peakier curve for approximately-4 and 
the broader curve fo r approx imately-9 in F ig ure l 2-2a). Th is increase in 
spread wi th increas ing number is the bas is for the hall mark properties of the 
ANS and , as di sc ussed prev iously, is simi lar to di sc rimination in many othe r 
d imensions (e.g ., brightness, loudness), discrimi nati on dependent on ratio and 
not their absolute nu mber (i.e., sca lar variab ility, or Weber 's law, desc ribed 
later). W hen you are try ing to discrim inate one numeros ity from another using 
the Gauss ian representations in F ig ure l 2-2a, the more overlap there is 
between the two Ga ussians being compared, the less accurate ly they can be 
d iscriminated. 
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Criti ca ll y , the overl ap between Gaussian di stribut ions is also the source for 
the differences in accuracy, RT. and internal confidence we ex peri enced when 
view ing Figures 12- 1 a and 12- 1 b. Numeros ities that are closer together have 
more overlap in their curves on the menta l number line, making them harder 
to separate from each other to determine which collec ti on is more numerous. 
Rati os that are closer to I , where the two numbers being compared are closer 
(e.g., Figure 12- 1 b), g ive ri se to Gauss ian A NS representati ons with greater 
overl ap, resulting in poorer and slower discrimination ( i.e., " rati o-dependent 
performance")- e.g., it fee ls eas ier to dec ide that there are more black cl ots 
than whit e clots when look ing at Figure 12- 1 a than at Figure 12- 1 b (and obser-
vers would make fewer errors, and dec ide fas ter, when shown Figure 12- 1 a 
than Figure 12- 1 b). Looking at the curves, and their overlap , in 
Figure 12-2a helps you to picture why errors, response times, and internal 
confidence may change as the numeros ities being compared become larger 
and closer in proporti on. 

To see how the bell -shaped representat ions of the ANS in Figure 12-2a 
can predict cl i!Terences in errors, response times, and intern al confidence, 
consider that the curve for approximately-) in Figure 12-2a is broader than 
the curve representing approximately-4 (i .e. , approx imately-5 has a larger 
standard dev iation than approximately-4) . These two curves are fairl y easy 
to v isual ly tell apart in Figure 12-2a. But , as one increases in number ( i .e., 
as one moves ri ght in Figure 12-2a) , the curves become more and more simi -
lar looking (e.g. , is curve 9 higher and skinnier than curve 10, or do they look 
pretty much the same?). A s the AN S representations become more similar---; 
i.e., as there is more overlap between the representations of the two numerosit ies 
to be di scrim inated- discriminat ion becomes harder, is more error-prone, and 
takes longer4 These bell -shaped representations predic t that d iscri minati on 
shou ld smooth! y become more and more d i fTi cult as the two numerosi ti es 
become more and more sim i Jar. 

In the ANS, it is not simpl y that larger numbers are harder to di sc riminate 
across the board . For exampl e, an observer ' s performance at discriminating 
approximately - 16 J'rom approx imately-20 (not shown in Figure 12-2) is pre-
dicted to be identical ( in error rate, response time, and internal confidence) 
to the observer 's perl'ormance at disc riminating approx imately-R from 
approximately- 10- as both or these trial s would involve the same ratio (i.e. , 
10/8 = 1.1 25 = 20/ 16). A lthough the curves for approx imately- 16 and 
approximately-8 do not have the same overa ll shape (e .g., the curve represent-
ing approximately - 16 would be broader and flatt er than the curve representing 

4. This example based on the height ami skin niness ol. the curves is simply to generate the in tui -
tion thai d iscri mination becomes harder as the curves become more simil ar. Acwal d isc rimination 
in the ANS is not based on the he ight s or the curves. bu t on the similarit y or the acti vati ons e li -
c it ed by the two se ts o r quan tit ies (shown graphica ll y in f-i gure 12-2a) and the amoun t o r ove rl ap 
between the two curves represe nting th ese numcrositics. 
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approximate ly-8), it is the amo unt of overlap between the curves being 
compared that determines error rates, response times, and internal confidence. 
Because the standard dev iation (SO) of the curves increases linearly 
with the mean * w), the curves representing approximately-8 
and approximately- ! 0 will overl ap in area to the same ex tent that 
approx imate ly- I 6 overlaps with approximately-20. 5 

Behav ioral performance in tasks that engage the ANS is richly tex tured and 
exqui s ite ly well structured . What do we mean by this? Observe rs don ' t s imply 
"do a bit worse" as the numbers become more s imilar; nor do they fee l "just a 
bit less confide nt. " Rather, each observer's error rate , response time, and inter-
na l con fidence are exqui s ite ly well pred icted by the bel l-shaped representa-
tions in Fig ure 12-2a , and the changes in observers ' performance as a 
function of tria l difficulty is very systematic . T hi s systematicity is what any 
candidate theory of approximate number representations must account for. 

There are, however, numerous misunderstandings about Weber's law (i.e., 
ratio-dependent performance) and espec ia ll y the Weber fraction (w) , which 
indexes individual d ifferences in ANS acc uracy and interna l confidence. In 
what follows, we elaborate on the nature of the Weber fraction and go throu gh 
some of the most common misconceptions about it , including that the Webe r 
fracti on indexes just-noticeable differences, that it is defined as 75 % 
accuracy, e tc. 

How to Think of a Weber Fraction ( w) in the Approximate 
Number System (ANS) 

What is a Weber fract ion (w), and what does it te ll us about an observer ' s 
approximate number system (ANS) re presentations? Some common mi sunder-
standings of a Weber fraction include that it is (I) the fraction by which a stim-
ulus with numerosity n would need to be increased in order for a subj ect to 
detect and report the directi on o f thi s change resulting in 75% correct perfor-
mance across tri a ls (i .e., that it is the "differe nce threshold" or the "just notice-
able differe nce," JNO) , (2) the sma llest ratio at which subj ects will be 
signifi cantly above chance in a numerical discrimination task, and (3) the mid -
point between subjecti ve equality of two collections and asy mptotic perfor-
mance in numerica l disc rimination . Rather, the Weber fraction is all of these 
things, and it is also s impler, more abstract, and more bas ic than any of these. 
Afte r illustra ting some problems with the above views, we sketch a proposa l 
that the Weber fraction can be understood as an internal scali ng factor that 

5. Note a lso that it is the numeri cal s imilarit y be tween the sets that is impo rtant for de termining 
how d iffi cult a trial m ight be, and not the ir abso lute size. Bigger is no t a lways harder; it depends 
on the numeri cal di stances in vo lved. Fo r example, 7 b lack versus 8 g ray clots is a harder tria l than 
17 b lack versus 30 g ray dots- because the rati o 30: 17 is la rger than the ratio 8:7. T hi s is some-
times ca ll ed th e "s ize e ffect. " 
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indexes the amount of in ternal prec ision ( i .e., signa l fi de lity) or every approx i-
mate number representation, and that the Weber fracti on , so understood , can be 
used to determine the standard dev iati on or every numeros ity representati on 
within the ANS, and can turn knowledge or any one approx imate number rep-
resentation into any other approx imate number representation. 

Consider F igure 12-2a to represent the A NS number representati ons for a 
parti cular individua l who has a Weber fracti on = 0.1 25. In the follow ing sec-
t ions, we desc ribe what role thi s number (0 .125) is taken to play by each or 
the fou r conceptua li zations l isted earli er. In the end, we suggest that under-
standing a Weber frac tion to be an internal sca l ing fac tor index ing the internal 
prec ision, con fi dence, or signa l fidel ity of a person's approximate number 
thoughts is the most va luab le and true conce p!Uali zali on. We suggest that thi s 
number (0 .1 25), so unclerstoocl, tell s us how imprec ise, or " noisy," a person's 
approx imate number thoughts are. 

The Weber Fraction Is Not a j ust Noticeab le D i fference (}NO) 
If you present the hypotheti ca l subject (whose ANS representations are 
depicted in Figure 12-2a) w ith the tasks we did w ith Figures 12- 1 a and 12- 1 b 
( i.e. , the task or determining which of two co llec ti ons has the greater number 
of cl ots) on a tri al where there are 16 gray clots, thi s subject would require an 
increase or 2 clots from thi s standard (Il l = 16; 16 • . 125 = 2; " 2 = 16 + 2 = 18) 
in order to respond that black ( 11 2 = 18) is more numerous than gray (11 1 = 16) 
on 75% or the trial s that present these two numerosities .6 That is, a subjec t 's 
Weber fracti on can be used to determine the amount by which you would need 
to change a particular stimulus in order for the subjec t to correc tl y determine 
which number was larger on 75% or the trial s (where chance = 50%). Con-
ce ived in thi s way. the Weber fraction describes a relationship between any 
numerosity and the numerosity that w ill consistently be cl isc riminatecl from thi s 
standard . Thi s gives one way o f understanding why you mi ght choose 7YYo cor-
ree l performance; however, to spec il'y what "consistentl y di scriminated from" 
mi ght mean, you could also choose some other standard (e.g. , 66.7% correct, or 
any other percent above 50%) . From thi s point or v iew, whi ch is often the dom-
inant one taught in psychophys ics, the point is to estimate the steepness of the 
linear porti on of the psychometri c fun cti on, or the slope of the linear ri sing por-
tion or thi s function (depicted in Figure 12-2b), and 66.7°/o would work for 
such purposes just as we ll as 75% or RO%. 

However, as we will see below, the seemingly arbitrary reasons for choos-
ing 75% correc t as an index of performance are somewhat justifi ed once we 
understand the mathemati ca l re lati onshi p that holds be t ween correct discrimi -
nati on performance, the W eber rrac ti on ( w ), and the standard dev iati ons of the 
underl y ing Gauss ian rep resental ions. 

6. Nolc . we usc ..... lhrou ghoul lo indicalc lllll ilip l icalion. 
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The Weber Fraction Is Not the Smallest D iscrim inable Ratio 
Some readers, more familiar w ith research on the acuity of the ANS in infants 
(Izard et a l. , 2009; Libertus & Brannon , 2009; L ipton & Spelke, 2003; Xu & 
Spe lke, 2000; Xu, Spe lke, & Goddard , 2005) and less familiar with the litera ture 
on adult psychophysics, may have come to believe that a Weber fraction 
descri bes the ratio be low which a subject wi ll fail to discrim inate two numeros-
iti es (e.g. , 6-month-olds succeed with a I :2 ratio and fail with a 2:3 rati o; Xu 
et a l. , 2005). This suggests a categorical interpretati on of the Weber frac tion 
(e.g., a threshold where you will succeed if a numerical difference is "above 
threshold " and fa il if it is " below thresho ld"). That is, some may have come to 
believe that perfo rmance shoul d be near perfect with ratios easier than a subject 's 
Weber frac tion and at chance for rati os harder than a subject 's Weber fraction. 

Ca tego ri ca l perfonnance, however, is not observed in typica l performance 
where a large number of tri als test a subject ' s d iscrim ination abi liti es across a 
wide range of ra ti os (Halberd a & Feigenson, 2008; Ha lberd a et al. , 20 12; 
P iazza et al. , 2010). In such cases, behav ioral performance shows a smooth 
improvement from a rat io of I (where 11 1 = n2 and there is no correct answer) 
toward increas ing acc uracy; and not a "step functi on" from at-chance perfor-
mance below the Webe r frac tion to above-chance performance above the 
Weber fraction . 

Consider again the s imple task of be ing brie fl y shown a di splay that inc ludes 
some black and white dots and be ing asked to determine on each flash if there 
were more black or more whi te dots. Pe rcent correct on thi s numeri ca l di scri m-
inati on task is not a step functi on with poor performance " below threshold" and 
good perfo rmance "above threshold ," but rathe r is a smoothl y increas ing func-
tion from near-chance performance to consistent success . Thi s performance and 
the range of ind ividual di ffe re nces, gathered from more than I 0,000 subjects 
between the ages of 8 and 85 years of age parti c ipating in thi s type of numerica l 
di scrimination task, can be see n in Figures 12-3a and 12-3 b. 

The actual behav ioral data fro m subjects seen in Figure 12-3a, and the mod-
e led ideal behavior seen in Figure 12-2b, suggest that the subjects will always be 
above chance no matter how small the d ifference between n 1 and n2 (e.g ., in the-
ory, even a baby wi II be "above chance" at see ing that I 0,00 I black dots is 
numerica lly more than I 0,000 gray dots; see Green & Swets, 1966); what 
changes is not whether an observer will succeed or fa il to make a d iscrimination 
but rather the number of tri als an experimenter would have to run in order to find 
a statisticall y s ignificant difference in perform ance on the most difficult tri als. 
Consider that the reg ion nearest to equality (a ratio of I ) is the reg ion of most 
rapid improvement in every observe r' s performance (e.g., F igures 12-3a and 
12-2b). That is, subjects' perfo rm ance shows more improvement when the ratios 
being tested increase from 1.0 I to I . I than they show when the rati os increase 
from 1.33 to 1.4. There are two take-home points that we 'd li ke to stress: ( I ) even 
a baby should be able to te ll that 2 1 black dots is numerically more than 20 gray 
dots (what changes is the number of trials we'd have to run to be able to show that 
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infants detect thi s difference), and (2) it is at the hardest rati os (e.g., 1.0 1 versus 
1.1 ) that we see the most rapid improvements in numeri cal d iscrimination perfor-
mance (and not at some " threshold" or fracti on that changes from .. at chance" to 
.. above chance" )7 

7. However, we woul d al so like to note th at , with in the practi cal limi ts or testing real babies , the 
inrant li terat ure's method o r looking ror a change rrom at-dtance perro rmance to above-chance 
perro nnance is a quit e reasonable approach. It a ll ows one to m ughlr locate the Weber rraction 
o r subjec ts who, like inran ts, canno t pa rti c ipate ill the large num ber or tria ls it ta kes to ac hieve 
the smooth data seen in Figure We have published papers tha t usc thi s kind or app roach, 
;utd it is a J'inc thit tg to do. But we' re suggesting that it wo uld be best ir we do not allow such 
prac tical conce ms to insp ire a ra ult y ro undation on whic h to grow our theory- based intu itions 
o r what is possi ble and illl possih le l'or the ANS attd othe r lll ag nitude representati ons. 
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Even for infants, then, and untrained observers, performance in numerica l 
di scrimination tasks should not shoot up from "at chance" for harder ratios to 
"s ignificantly above chance" at easier ratios. Melissa Libertus and colleag ues 
have ingeniously demonstrated that infants look ing time to numerically vary-
ing stimuli can revea l a smoothly graded funct ion of increasing look ing that is 
quite s imilar to what is seen in Figure 12-3a (Libertus & Brannon, 2009, 
20 I 0) . In these tasks, infants are shown a display of dots at a particular ratio, 
and their looking time to the display is measured; the amount of time infants 
spend look ing at the display is a continuous function dependent on the ratio: 
as ratios get harder and harder, infants g radually look less and less. Th is work 
hi ghlights, in dramatic fashion, that misunderstanding a Weber fraction to 
indicate something about a change from chance performance (or an 
" inability to di sting ui sh") to a sudden abi lity to di sting ui sh numerically vary-
ing stimuli wi ll generate the wrong intuitions (i.e., in theorists, teachers, and 
students). 

Th e Web er Fraction Is Not th e Midpoint b etween Subj ective 
Equality and Asymptotic Performance 
One common approach to loca lize the Weber fraction at some point a long the 
smoothly increas ing curve in Figure 12-3a is at 75 % accuracy-the midpoint 
be tween subj ective equality of the two numerositi es being compared (without 
biases, occurring at a ratio = I , whe re n 1 = n2) and asymptoti c performance 
(typicall y occurring nearing 100% correct, although asymptoti c performance 
could be lower in unsk illed subj ects, resulting in a midpoint that fall s at a per-
cen t correct lower than 75%; for example, see Ha lberda & Feigenson, 2008).g 
Hence, to calcu late a Weber fraction, a researcher may take the ratio at which 
the observer performed at 75% and then subtract I (e.g ., if 75% performance 
is at a rati o of 1.25 , then the w is estimated at 0.25). 

If observers behave optimally and if the Weber fraction is within a partic-
ular range , thi s shorthand does produce the co rrect value. In F igure 12-2b, we 
have drawn the expected percent correct for the ideal subject in F igure 12-2a 
whose Weber fraction (w) = 0 . 125 as derived by a model from c lass ical psy-
chophysics. This idea li zed subj ect wo uld perform at 75% aro und ratio 1.1 28. 

There are two challenges, however, with conceptualizing the Webe r frac -
tion in this manner. First, the mathematical relat ion between w (conceptua li zed 
as a sca ling factor) and the ratio a t 75 % is not constant: whereas an observer with 
a w oF 0. 125 wi ll perform at about 75 % around ratio 1.125, an observer wi th a 
w of 0 .5 will perform at around 75 % around a ratio of 2.0 , not 1.5! 

8. T ypi call y, behavioral perfo rmance w ill cross 50% at rat io = I for an observer who has no bias to 
choose black or white and who is simpl y guessi ng at chance = 50% when 11 1 = n2 (#black = #gray); 
and it may never reach I 00% no matter how easy the trials become (e.g. , because everyone has some 
tendency to make a miss-hit on the response keys from time to time, even if merely from sheer bore-
dom with all those clots). 
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Second , understand ing of the Weber fraction as the midpoint between sub-
ject ive equality and asymptoti c performance misses the deeper cont inuous 
nature of disc rimination within the ANS. For example, thi s focu s on 75 % 
has led many researchers throughout hi story to believe that acc uracy is the 
theoretica l va ri ab le they are hopin g to measure. For example , many readers 
may be fami I iar with "staircase" methods or adaptive procedures that adjust 
tr ial difficulty in respon se to the subjec t's performance in an att empt to focus 
the majori ty or trials on a position where the subject is at 75% correct (as if 
thi s point we re or spec ial importance). As we see in the nex t sect ion, there 
is nothing at a ll spec ial abo ut 75% correct performance. The Weber fraction 
(11') , properly understood as a sca ling factor for determining internal variabi l-
ity for every approximate number represe ntati on, perfectl y predicts perfor-
mance at 75 % correct, or 85%, or 5 1.3756% correct, and eve ryth ing in 
between; and it determines performance along the entire smoothly improving 
curve seen in Figures 12-2b and 12-3 b.9 

Weber Fraction Conceptualized as a Scaling Factor 

Let us consider a fourth way of understanding the Weber fracti on: as a sca ling 
factor that indexes the amount or "noisiness" surrou nding every numeri cal 
represent ation of the ANS. 

Consider aga in the Gauss ian curves in Figure 12-2a. The spread or each 
success ive numeros ity from 4 to 10 is stead ily wider than the numeros ity 
before it. This means that the discriminabil it y of any two numeros ities is a 
smoothly va rying fun cti on, dependent on the rat io between the two numeros-
it ies to be discriminated. In theory, such d isc riminati on is never perfec t 
because any two numeros ities-no matter how distant from one another- will 
always share some overla p. At the same time, discrimination will never be 
entirely imposs ible, so long as the two numeros ities are not identi ca l, because 
any two numeros it ies, no matter how close (e.g. , 67 and 68) , will a lways have 
some nonoverlapping area where the larger numerosit y is delec tab ly large r 
(G reen & Swets, 1966). Correc t discrimination may occur on onl y a small 
percentage of trial s if the two sets are very close in number, but it will never 
be imposs ible (up to the limits or the sensory detector). This motiva tes the 
intuition that percent correc t in a numerical disc rimination task should be a 
smoothly increas ing funct ion from the poi nt or subjec tive equalit y to asymp-
tot ic performance. The smooth increase in percent co rrec t as a functi on of 

<J. ror those in\Crcs icd in praeli ca l conccm s. I he mos\ re liab le and s1abl c pe rformance l'o r human 
subjec ts. whe re \rial s arc ne il he r too easy no r too hard . occt11·s a\ around ll6'if co rrec t pe rform ance 
(lei's ca ll it the "Go ldil ocks pos ition ") and not at 75c;( co rrec t (th is l'auoid ga m ercd !'rom model -
in g work in ou r lab. and our pmcti ca l ex pe ri e nces 1cs1ing subj ec \s across a wide range or ab ility 
leve ls and ages , and informed by conve rsations w ith I he g rca\ and st imulating Zhong- Lin Lu). So, 
eve n l'or prac ti ca l reasons (beyond theo re ti cal concc m s) we should not i'oc us on 75c1c as so methin g 
spec ia l. 
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ratio is no accident. It is the smoothl y increasing spread in the underlying 
Gauss ian representat ions dep icted in F igure 12-2a that is the source of the 
smoothly increasing "Percent Correct" ideal performance in Figu re 12-2b. 

Noting the smoothly increas ing spread of the Gauss ian representations in 
F igure 12-2a might motivate you to ask what is the parameter that determ ines 
the rate of increase in standard deviation with numerosity , and what determines 
the amount of spread in each Gaussian representation on the mental number 
line? In fact, it is the Weber fraction that determines the spread of every sing le 
representation on the mental number line by the followin g formu la 
(SD111 = :Xn 1 • w). The standard deviation (SD) of the Ga uss ian bell -shaped curve 
representing any particular numerosity on the mental number line is the central 
tendency for that representation (:X11 1) multiplied by the Weber fraction (w) . 

Why is thi s the case? Well , intuitively, it is the standard deviations o f the 
underlying Gaussian representations that determine the amount of overlap 
between the curves that represent any two numerositi es, and it is the amo unt 
of overlap between the numerosities that determines how wel l any two numer-
os iti es can be di sc riminated . The categorica l views of the Weber fracti on as a 
kind of threshold between successful di scriminat ion and failure, or as the mid -
po int be tween subjective equality and asymptot ic performance, choose to 
focus on on ly one particular point of what is actua ll y a continuous and smooth 
function of increas ing success at di scrimination . As a result , thi s entire func-
tion is determined by the Weber fraction because thi s parameter desc ribes the 
standard deviations of every s ingle numeros ity representation in the ANS-
andthe re in the degree of ove rl ap between any two numerosities on the mental 
number line. 

The Weber frac ti on (w) is the constant that describes the amount of preci -
s ion for each observer's ANS number representa ti on. It is a sca ling factor by 
which yo u could take any one of the c urves in F ig ure 12-2a and turn it into 
any of the other curves in Figure 12-2a in an accord ion-li ke fashion. In the 
linear mode l depicted in F igure 12-2a, the analog representation for any 
nume ros ity (e.g. , 11 = 7) is a Gauss ian random variab le with a mean at 11 

(e .g., 11 = 7) and a standard dev iation of (n • w). 10
'

11 T hi s means that for a sub-
ject who has a Weber fraction of 0.1 25, the ANS representation for 11 = 7 will 
be a be ll -shaped normal c urve with a mean of 7 on the menta l number li ne 
and a standard dev iation of 0.875 = 0 .125 • 7 . By substituting any number 
you like for n , you can eas ily determ ine the shape of the underlying ANS rep-
resentation without eve r having the observer engage in a numerical 

I 0. Note thai signal compress ion or expansion is also important because il can change the posi-
tion or representat ions along the mental number line (for detai led discuss ion, sec Od ic el al. , under 
review)-a detail that does not concern us f'or the present moment. 
II. Note also that the relationship of' the Weber fract ion (11 ·) lo internal con fidence is also I rue for 
a logari thmic model or numerosity representation , w ith any differences in detail s not relevant for 
the present discussion. 
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discrimination task that compares two numbers. Th is illustrates the power of 
understanding the Weber rraction as an index or signal fidelity, internal con-
fidence, or internal noise. Rather than simply telling us something about how 
we ll a subject will do al discriminating two numbers ''near their just noti ce -
able difference," the W eber fracti on (1·1·) tells us the shape and overlap of 
every single number representation along a mental number line. The Weber 
frac ti on is about al l of the represe ntations, not just the ones " near threshold ." 

Unclersloocl in thi s way, the Weber fracti on is not even specific to the task 
or numeri ca l discrimination ; indeed, it is wholl y inclepenclenl and prior to dis-
criminati on. A n animal that , bi zarrely, could only represent a single numeri ca l 
va lue in it s ANS (e.g. , could represent only appro.rinwtel\'-7 and no other 
numbers) and could therefore never di sc riminate 12 from any other number 
(i.e., could not even perform a numerical discrimination task) wou ld nonethe-
less have a Weber fract ion, and we could measure it' 

Meet justin Th e Rat 
In thi s secti on, we want to bri efl y discu ss the beaut i fu ll y l imited mind of an 
animal named " Justin T he Rat," which, strangely, can on ly represent the num-
ber OJJtJro.rinwte/y-7 and no other number. Justi n The Rat can represen t all the 
other things that we represe nt (e .g., dots, co lors) , but for numbers, he has on ly 
one thought , and that is the thought appro.rinwte/y-7. 

Question: Hey, Justin The Rat, how many food pellets d id you just eat? 
Answer: Appro.rinwtell'-7. 
Quest ion: On another topic, Justin The Ra t, surely you do not believe 
in God? 
Answer: Well , not in an interventioni st Chri stian god, if that 's what 
you mean. 
Questi on: Dear Justi n The Rat, on a sca le from I to 10, with 10 be ing 
''smoking hot" and I being " let 's not talk abou t thi s," how sexy am 
l rea ll y? 
Answer: Appro.rimate/v-7. 

You get the idea. 
How well wou ld Justin The Rat do if we asked him to choose which array 

has more clo ts while showi ng him 16 gray dot s and 1g black clots? It may 
seem preclestinecl thal Justin The Rat would be terrible al a numerica l d iscrim-
ination task involv ing two se ts of clot s, each w ith more than 7 clots-owing to 
his unique brain abnorma lity that li mits hi s numerical thoughts to atJtJro.ri-
IIWte/y-7 and nothing else. For instance, how wou ld we teach him such a task 
or measure his per formance') And , is it even possible to have a li v ing creature 
with numeri cal cognitive abil iti es so impaired? Does Justin T he Rat hare a 
Weber fraction (w), and how would we measure it? To answer these ques-
tions, we invite you to take our ear l ier, technica l , sec tions as a po int of 
departure. 
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As we have seen, a Weber fraction can be understood to be a scaling factor 
that detennines the standard deviation of the bell -shaped curves representing 
each and every number representation in a subject's approx imate number sys-
tem (ANS). Numerical discriminat ion tasks (e.g., Figures 12- la and 12- lb) 
are not the only way of measuring thi s type of internal scaling parameter. 

Although production tasks (such as the "tap your finger 11 times" task; 
Whalen , Gallistel, & Gelman, 1999) and di scrimination tasks (such as the 
"who has more" task; e.g., Figure 12- 1) have often been discussed separately, 
they measure theoretica ll y identica l aspec ts of ANS representations. For a 
"tap your finger 11 times" task , researchers generate a measure of the coeffi-
cient of variation (CoY or CV), which is the standard deviation of the number 
of presses divided by the mean number of presses. For example, ask a subject 
to press a bullon 9 times too quickly for explicit counting whi le say ing the 
word " the" to further block verbal counting. The result will be a bell -shaped 
distribution of responses; the subject will most often press 9 times, but will 
also sometimes press 8 or 7, and sometimes press I 0 or II or 12, etc. Graph-
ing the number of instances where the subject presses 7, 8, 9, 10, II , etc., 
times when requested to press 9 times will reveal a smooth bell-shaped curve 
centered around 9 (similar to the curve for 9 in Figure 12-2a) . Take the stan-
dard deviation of this bell-shaped curve and divide it by the mean of thi s 
curve to return the CV for this subject (i .e., CV119 = SD119j:X119). For this task , 
which also engages the ANS, CV is expected to be constant across all num-
bers probed. That is, ask the same subject to do the study again press ing, 
e.g. , n = 14 times, bui ld a similar-looking (but fatter) be ll -shaped curve cen-
tered around 14, divide the standard deviation of this curve by the mean of 
thi s curve , and you should get the same CV that you got for the version of 
the task in which the requested number of presses was 9 (Cordes et al., 
2001 ; Whalen et al. , 1999); CVnl4 = SDnt4/Xnt4; and, 

The source of the bell -shaped curves in a numerical production task is not, 
in theory , simply mispresses or mi stakes (a curve bui lt out of mispresses 
wou ld not be a bell -shaped Gauss ian, but a more narrow, binomial , non-
Gaussian , curve; Cordes et al. , 200 l ). The source of the bell -shaped curves, 
and the fatness of the curves, is the variability in the underlying representa-
tions of the ANS . And this leads to a little-remarked-upon identity: an obser-
ver 's CV and his or her Weber fraction (w) should , theoretica lly , be identica l 
numbers. 

Note, CV11 = SD11 /X11 • And, as we . mentioned previously , the SO of the 
underlying ANS representat ion for any number can be determined using a 
subject 's Weber fraction (w) as an internal scaling parameter, i.e., 
SD11 = X11 • w. Rearrange this equation and you get SD 11 /x11 = w, the same 
equation that we use to ca lculate CV (i.e., SD,Jx11 = CV11 ). That is, CV = w. 

This identity makes intuitive sense upon reflec tion. As subjects try to tap 
their finger quickly in a numerical production task, they give up on verba l 
counting and allow their ANS to assess when the target number of taps has 
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been reached. But these ANS represe ntati ons are "noisy ," lead ing observers to 
sometimes tap too many times and sometimes tap too few times over the 
course of many tr ial s. In thi s way, the source or the errors in a ''tap your 
fin ger" task is the noi sy representati ons of the ANS. The sou rce of the errors 
in a numeri ca l di sc rimination task (e.g. , Figures 12- la and 12- l b) is also the 
noisy representations of the ANS . The coeffi cient of va ri ance (CV) and 
Weber fraction (w) are two ways of estimating the imprec ision , or va ri ab ilit y, 
in these underl ying representations. And so, CV and ware two ways of mea-
suring the same thing. 

Thus, to estimate the Weber fracti on for Justin The Rat- an animal that , 
strange ly, can represent only aeem.rilll(lte/v-7- train him to press a button 7 
times, run many trial s, ca lculate CY, and CV = w (for an alternati ve method, 
see Od ic, Im , et a l. , under review , and visit www.panamath .org/psim le). Here, 
yo u have found the Weber fraction for an animal without ever having that ani-
mal compare two numbers or see two co ll ec tions. Th is is an illustration of the 
inductive power of understanding the Weber fraction (w) to be an internal 
sca ling factor. A Weber fraction need not require an understanding of failure 
or success at numerica l di sc rim ination , nor even the abil ity to make a numeri -
ca l di sc rim ination. Rat her a Weber fract ion (1 1·) is simply a way of index ing 
the internal prec ision (aka signal fi del ity, intern al confidence , noise) in a per-
son's ANS app rox imate number representations. 12 

How a Weber Fraction ( w) Indexes Individual Differences 
in ANS Precision 

The inductive power of unde rstanding the Weber fraction (w) to be an intern al 
sca ling factor is further highlighted when we compare the Weber fract ions of 
different indiv idua ls. Ind ividu als di ller in the prec ision of their ANS represen-
tati ons. Some people ha ve less preci se approx imate number representati ons, 
and some people have more prec ise represen tati ons (Ha lberda & Feigenson , 
2008; Halberda et al. , 201 2). In Figure 12-4a, we have illustrated some idea-
li zed curves that di splay the unde rl ying ANS representati ons for a subject 
whose w = 0.1 25 and , in Figure 12-4b, for a subject whose w = 0. 20. Cru -
ciall y, you can see that the subject in Figure 12-4b has a grea ter degree of 
overlap between the bell -shaped curves of their ANS representati ons than 
the subjec t in Figure 12-4a (reca ll , a bigge r Weber frac ti on means more noise 
and fatter curves). It is thi s over lap that leads to diflerences in internal 

12. In ru ll di sc losu re, produclion!asks and d isc riminalion l<i sks may no! a lways be measuring !he 
same lhing, because in rau , i! is unlikely !hal any psycholog ical !ask is meas uring on ly one lhing. 
No mailer how si mpl e you make !he !ask. il is like ly !hal many diiTcrenl psyc hologica l rac lors are 
requi red l·or encoding, response general ion , and dec ision making. As such. in prac! icc. measured 
CY wil l no! pe rl.ee! ly prccl icl measured II'. A sc ietllil.ica ll y producli ve qucs!ion CY tni ghl be, 
"How miglll the dirrerences in measured eS!i nulles or CY and 11· help us de!enninc !he vari ely 
or psycholog ica l variables !hcse !asks have in co tnmon and !hose !hal !hey ha ve diS!incl ly'! ' ' 
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FIGURE 12-4 Individual differences in the ANS. T he difference between an indiv idual wi th a 
better (lower) Weber fracti on in (a) and an indi vidual w ith a worse (higher) Weber fraction in 
(b) is entirely in the variab ility or the ANS representations: higher overlap between the represen -
tations results in lower accuracy ( i l lustrated in fcl) and lower con fidence and higher RT. 

confidence, error rates, and response times- and to the difficu lty in discrimi -
nating two stimuli that are close in mtmerosity. The hypothetica l subject in 
F igure 12-4b would have poorer performance than the subject in Figure 12-4a 
in a numerical di scrimination task (e.g. , F igures 12- 1 a and 12- 1 b) . 

The ideal performance in Figure 12-4c also shows the smooth gradual 
increase in percent correct as a function of ratio that we have been discussing. 
In Figures 12-3a and 12-3b, we saw data from more than I 0,000 individuals 
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who played a numerica l di sc rim ination task online. Every one of the more 
than 10,000 observers in thi s sampl e obeyed thi s k ind of gradua l increase in 
percen t correc t (seen in Figure 12-3a) from a rati o o r I (where the number 
of black and gray clots are equal ) to eas ier rati os l ike 2 (where there might 
be 20 black clot s and I 0 gray cl ots; 20/ 10 = 2) . What changes from observer 
to observer is how steep the left side or the performance curve is (NB, you 
can see thi s difference in Figure 12-4c for the two hypotheti ca l subjec ts 
who differ in their Weber frac ti on). 

In Figures 12-3a and 12-3b, indi v idual differences are shown by ind ica ting 
the range of performance from the lower I 0' 11 to the upper 90' 11 percentile rank of 
the more than I 0,000 observers ( i .e ., the lower bound or the gray-shaded reg ion 
in Figure 12-3b indica tes the average performance of the 90'11 percentile group 
I i.e .. best! . and the upper bound of the gray-shaded reg ion indicates the average 
performance o f the I Oth percentile group I i.e., worse I; note that the upper and 
lower bounds are reversed for F igure 12-3a because higher percent correct 
translates to lower Weber fracti on (11') , i.e., lower internal noise) . Figure 12-
3b shows how the average Weber fracti on improves over development. 

A steeper, quicker ri se in the psychometr ic functi on (Figures 12-4c and 
12-3a) indicates better sensiti v ity, be tter d iscrimination abi lities , more prec ise 
ANS representati ons (e.g., sharper bell -shaped humps in the A NS, w ith less 
" noise " ; smaller standard dev iat ions for each hump), and thi s is indexed by 
the subjec t hav ing a sma ll er Weber fracti on (Figures 12-4a, 12-4b, and 12-3b) 
(i.e., a smaller Weber fracti on indicates less noi se in the underl y ing ANS 
representati ons) . 

The va lues for the Weber fracti ons in Figure 12-4 have been chosen so as 
to illustrate another va lue or understanding the Weber fraction to be an inter-
nal sca ling factor: it empowers compar isons ac ross indi v iduals and formal 
models of indiv idual di fferences. Converting the Weber fraction for each of 
these subjects into the nearest whole number fracti on reveals that the Weber 
fracti on for the subjec t in Figure 12-4a is 8:9 and for the subjec t in 
Fi gure 12-4b is 5:6 (i .e., 9/8 = 1.1 25; 6/5 = 1.20). Investigating the Gauss ian 
curves in Figure 12-4a and 12-4b reveals that the bell -shaped curves ror the 
numeros ities 8 and 9 ror the subjec t in Figure 12-4a are identica l in shape 
to the bell -shaped curves ror the numerosities 5 and 6 for the subjec t in 
Figure 12-4b. This too is no accident. T he only parameter that has been 
changed in the constructi on of Figures 12-4a and 12-4b is the W eber fracti on 
for the subject. T his sing le parameter determines the spread in the curves that 
represent every poss ible numerosity in the ANS or each subjec t. 

In thi s way , understand ing the Weber frac ti on to be an internal sca li ng fac-
tor that determines the spread of every ANS number representati on not onl y 
empowers us to compare one number representati on to another w ithin a par-
ti cular subj ec t (e.g., the lesson we learned from Justin T he Ra t), but al so 
empowers us to compare across indi v iduals and to create mathematica lly trac -
tab le pred ictions about how the ANS representations of one person (e.g., the 
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subj ect in Fig ure 12-4a) rela te to the ANS representations of another (e.g. , 
the subject in F igure 12-4b). Thi s is not the case for any other estimate of 
individual differences that yo u might pre fe r to use (e.g ., percent correct, aver-
age response time, the slope of error rate as a function of ratio , the s lope of 
response Lime as a fun ction of ratio) , a lthough these may be used as rough 
approximations (e.g., just li ke subtracting I from the 75% ratio can , in some 
c ircumstances, be used as an approximation). 

Two important goal s of psychology are to measure and to understand the 
sources of indi vid ual d ifferences in a wide range o f soc ial behav iors and cog-
niti ve abilities. A valuable approach to approaching these chall enges is to 
deve lop a fo rma l mode l of the parti cu lar aspec t o f the psycho logica l sys tem 
that you hypothes ize is different from one person to another- such as the pre-
cision and acc uracy o f the bell -shaped representations o f the ANS. When we 
understand a Webe r frac tion (w) to be an internal scaling factor that indexes 
the prec ision of each person 's approx imate number th oughts, we find that thi s 
a llows us to direc tl y translate (in a fo rmal sense, seen graphica ll y in 
Figures 12-4a to 12-4c) from one individual 's ANS prec is ion to another indi -
vidual's ANS prec ision; and to build spec ific proposals for the shape and ac ti -
vati on of each numerica l representation within each individual' s ANS. 

There remains important work to be done, both pract ical and theoretical , to 
ensure that we are correctly measuring subjects' Weber fractions (e .g ., how 
much display time is optimal? Does the Weber fraction change if we present 
auditory stimuli rather than visual stimuli?). A lso, we must strive to ensure 
that our forma l models of a Weber fraction reflect the actual behavior and 
ne uronal activity of our subjects of interest. This is an ongoing process for 
our research field , and we do believe there are major di scoveries sti ll to be 
made . But, we also believe that understanding a Weber fraction as a scaling 
factor is an important foundation for study ing individual differences , and for 
beginning a journey of making new di scoveries that will help us build more 
appropriate and accurate models of cognition . 

THE RELATION BETWEEN THE WEBER FRACTION 
AND INTERNAL CONFIDENCE 

One further lesson we can draw from our ex peri ences with Figures 12- 1 a and 
12-1 b is the power of internal confidence to inform how we search and inter-
act with the world . If you happen to still have children nearby, you might try 
asking which pic ture (Figure 12- 1 a or 12- 1 b) they think looks li ke the eas ier 
pic ture to answer without actually making the judgment. Which p ic ture will it 
be easier to fi gure out " who has more?" We imagine that you would find that 
even without counting, child ren will judge that F igure 12- la will be the easier 
trial. We beli eve that thi s ability to respond which fi gure would be eas ier to 
answer emerges from our sense of interna l confidence for ANS questi ons 
and di spl ays , which d irec tl y stems fro m the internal va ri abili ty in the 



323 PART I Ill Theorcti c,1 l Perspecti ves ancl Evolut ionary Foundations 

Gaussian (be ll -shaped) representations (whose va lue is scaled by the Weber 
fraction). In thi s way, the psychophys ica l model outlined above or the Weber 
fracti on as a sca ling parameter provides a unified explanation for the rati o sig-
natures, indi v idual differences, and the source of internal confidence in our 
approximate number decisions. 

Importantl y, noti ce that you and the child can answer thi s "easiness" ques-
ti on (and the "which are you more li kely to make an error on" questi on asked 
earlier) ew!n IJefore you f igure om the correct answer. That is, even w ithout 
ever being told which co lor has more clots (i .e ., before telli ng the child that 
·'black has more" for both Figure 12- 1 a and Figure 12- 1 b), we seem to be ab le 
to tell that Figure 12- 1 a wi II be the eas ier image to answer which has more. 
Because our fee ling of internal confidence occurs pri or to our decision, we 
can use it in several ways. For example, it is a signal to ·'s low clown " and 
be more careful about answering the questi on fo r Figure 12- 1 b. We might also 
have a sense that we should " look more close ly at those clo ts on the lower left 
corner o f Figure 12- 1 b before we answer to see i r there are more black or gray 
dots clown in that visuall y crowded reg ion or the di splay ." This means that our 
sense or internal confidence (a nd tri al cl ilTi cul!y), generated by our ANS 
representations, can help us dec ide how to atJproach answering a ques tion 
(e.g., where to allocate our attention, or when to be careful and take a second 
glance). Thus, the ANS is not simpl y in the business or giving us an answer to 
a numeri ca l questi on; it is, perhaps more importantl y, invo lved in helping us 
direc t our limited al!ention and memory resources to help us make more 
effective dec isions (Od ic et al. , 20 12). 

In thi s way, far from amount ing to counterproposa ls to the importance of 
the A NS, some recent results revealing that observers are allec tecl by stimulus 
factors such as size-conflicting stimuli (Dak in et al. , 2011 ; Gebuis & 
Reynvoet. 201 2; Szucs, Nobes, Dev ine, Gabri el , & Gebui s, 201 3), spatia ll y 
intermi xed stimuli (Gebui s & Reynvoet , 201 2; Price et al. , 201 2) , or briefl y 
J'lashecl stimuli (Inglis & Gilmore, 20 14) are all beautiful demonstrati ons of 
the importance of internal confidence, generated by ANS representations for 
guiding our numeri ca l dec isions. We hypothes ize that observers rely on inter-
nal confidence from the ANS (wh ich is sensitive to the contex t of stimulus 
presentation) to marshal their cognitive control abi lities in order to respond 
more effectively to numeri cal stimuli , which vary wildl y in their mode of 
presentat ion across contex ts (e.g., sounds heard , objects seen, all at once or 
seriall y presented). T he ellec ts o f stimulus presentation and , e.g., size/ 
clurati on-controllecl or size/cluration-con founclecl stimuli are beautiful demon-
strations of the importance of approximate number representations and internal 
confidence for numeri ca l cognition. 

Finall y. internal confidence. in being fu ndamenta ll y related to W eber frac-
ti ons, is also an important ind iv idua l difference that may be related to other 
cognitive abilit ies. An obse rver who has less prec ise ANS representati ons 
for number will fee l somewhat confident that .. black has more" for 
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Figure 12- 1 a, and may fee l very low confidence that " black has more" for 
Figure 12- 1 b (and all observers are like ly to take longer and to make more 
errors for Figure 12- 1 b than 12- 1 a). We theorize that thi s difference in inter-
nal confidence has a major impact on how we fee l about mathematics across 
our entire lives and may be the dominant source for what we experi ence as, 
"lam (am not) a math person." Ongoing work in our lab is testing the re lat ion 
between intern al confidence and school math performance. We believe that an 
understand ing of interna l confidence can be a major unify ing force for the 
stud y of approximate number representations. All of the work being done in 
thi s exc iting field is valuable and relevant; e .g ., every empirical paper reports 
findings that can he lp to re fin e o ur theories of approximate number represen-
tat ion. Rather than de fending o lder ideas about how intern al representations of 
approximate number might affect our mathematica l thinking, we are exc ited 
to look to the future for new constructs that can unify across our older 
distinctions. 

CONCLUSION 
ln this chapter, we have tri ed to promote understanding a W eber fraction (w) 
as a sca ling factor that enables any ANS number representation to be turned 
into any other; or, equivalently, as an index of the amount of interna l confi -
dence a person experi ences in his or her approximate number thoughts. 
Understood in thi s way , a Weber fraction does not require the commonsense 
notion of a " threshold" (i.e., a change from failure to success) , and it does not 
generate the same kinds of confus ions that thi s commonsense notion gives rise 
to. Additionally, thi s psychophysical model integ rates with a variety of s igna-
tures that have been experimentally observed. 

We believe that thinking about a Weber fraction as JNDs, crit ical ratios, of 
75 % performance has given ri se to some confusions and that it is currently 
limiting our theori zing (e .g ., the confusion that performance should change 
from chance performance at difficult ratios to above-chance performance at 
easy ratios, while, as shown in Figure 12-3, the actual performance of subjects 
does not look thi s way at all , but instead is a smoothly increasing function) . It 
a lso does not promote the kind of understanding of the approximate number 
system (ANS) that highlights the systematic nature of variability throu ghout 
the system. Understanding a Weber fraction (w) to be a sca ling factor- i.e., 
an estimate of signal fide lity across a ll poss ible ANS representations-
promotes our understanding that variab ility inhe rent in ANS representations 
is not mere ly a bug but is rather a feature of our approximate number system. 

The hea rt of the ANS (and the psycholog ical ex periences of number that it 
generates) is its ordinal and approximate character. Because the ANS di splays 
scalar variability in its coding of numerosity , understanding the variability of 
any one ANS representation (e.g., through measuring CV) can be eas ily trans-
lated into an understanding of the internal variability, and internal confidence, 
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for every sing le ANS number representation. Furthermore, understanding a 
Weber fracti on ( 11 ') as a scaling factor also promotes our understand ing of 
the systemati c relationships that ex ist across individua ls (e.g., the compari son 
or the two subj ects in Figure 12-4). 

W hen we understand the Weber fracti on ( 11 ') to be an internal scaling 
parameter that indexes the amount or prec ision and internal confidence in 
each person's approximate number thoughts, we can begin to see many new 
doors for research beg in to open-e.g., connections to math anxiety, stereo-
type threat , the fee l ing o f " I 'm just not a number person. " Connecti ons to 
executi ve fun cti oning and the poss ibi l ities for interventi ons to improve num-
ber sense also come in to a sharper foc us. A ll these avenues have yet to be 
ful ly explored, and we are excited to be ab le to play just a sma ll role in tes ti ng 
out some o f these ideas. 
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