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INTRODUCTION

We all have an approximate sense for numbers. That is, we have experiences
of estimating of how many voices we hear or stars we see, and we have
experiences of ordinal relation such as judging that the number of voices we
hear right now is fewer than the number of stars we see in the sky right
now. The sense of number that supports these kinds of experiences is quite
immediate (in perception) and primitive (i.e., operating from birth and serving
as a foundation on which we learn about the world as understood through
numbers). We share this primitive sense of number with other animals (i.e.,
it has been measured in nonhuman primates, mammals more broadly, birds
and fish; e.g., Cantlon & Brannon, 2006; Hauser, Tsao, Garcia, & Spelke,
2003; Meck & Church, 1983; Nieder & Miller, 2004), with babies from birth
(Izard, Sann, Spelke, & Streri, 2009), with individuals from every human cul-
ture (NB, even those with no written mathematics of any kind; e.g., Dehaene,
Izard, Spelke, & Pica, 2008; Frank, Everett, Fedorenko, & Gibson, 2008;
Gordon, 2004; Spaepen, Coppola, Spelke, Carey, & Goldin-Meadow, 2011),
and with every human-like mind that has ever walked the face of this earth
(e.g., the painters of the Chauvet cave and Jesus of Nazareth).'

The portion of cognition that generates these experiences of approximate
number has been called an “approximate number system” (ANS). It is

1. But note that homology has yet to be demonstrated—and, a prudent theorist might bet that the
number sense is a case of convergent evolution in fish and humans or insects and humans given
that we know of so little at the system’s neuroscience scale that would currently count as homol-
ogous among these organisms (special thanks to Alvaro Mailhos and Dave Geary for discussions
and inspiration surrounding this point).
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generated by neurons in the intraparietal sulcus (IPS) and area lateral intrapar-
ietal (LIP) cortex (Nieder, 2005; Nieder & Miller, 2004; Piazza, 1zard, Pinel,
Le Bihan, & Dehaene, 2004; Roitman, Brannon, & Platt, 2007). It is an evo-
lutionarily ancient and primitive system for numerical thought, and yet, sur-
prisingly, individual differences in the accuracy and precision of these
approximate number representations relate to our performance in symbolic,
formal, school mathematics (for review, Feigenson, Libertus, & Halberda,
2013; but see De Smedt, Noél, Gilmore, & Ansari, 2013).

Much of the evidence that supports our current understanding of the ANS ig
reviewed in other chapters within this volume (e.g., Cantlon, this volume:
Starr & Brannon, this volume; vanMarle, this volume), so we try not to dupli-
cale those here. Instead, our aim is to describe the psychophysical model
describing ANS representations and their precision (i.e., the Weber [raction
and related concepts) and to suggest a reason why this precision may differ
across observers. We’ve organized the chapter into three major sections. We
begin by discussing the critical ANS behavioral signatures, including internal
confidence, individual differences, and ratio dependence. Subsequently, we
review the psychophysical model that accounts for these signatures, including
a discussion on the nature of the Weber [raction (w), which we conceptualize
as a scaling factor that determines the precision of all ANS representations.
Finally, we elaborate on this model and argue that the ANS’s key role is in
providing “internal confidence™ to the observer, rather than the absolute num-
ber ol items in a scene.

BEHAVIORAL AND NEURAL SIGNATURES OF THE ANS

The ANS has been extensively studied, and there are many well-established
signatures of its use (see following sections). Here, we focus on three behav-
ioral signatures that we believe are central to the proper understanding of the
ANS: the internal confidence generated by decisions about approximate num-
ber; individual differences in ANS performance; and the effect of numerical
ratio on accuracy, response time, and internal confidence.

The heart of the ANS (and the psychological experiences of number that it
generates) is its ordinal and approximate character. Consider the images in
Figure 12-1 (NB, the ANS is multimodal, e.g., Nieder, 2012, and provides a
sense ol number for both voices heard and stars seen, but our examples focus
on vision for ease ol demonstration; Baker & Jordan, this volume). The reader
will likely find it quite simple to judge that there are more black dots than
white dots in Figure 12-1a, even with only a brief glance. It is also likely that
deciding whether there are more black dots than white dots in Figure 12-1b is
a bit more difficult. Irrespective of the reader’s answer (o this particular
“more” question, we invite you (o reflect on your internal confidence for
any ordinal guess you might make with respect to Figures 12-1a and 12-1b.
For which figure, 12-1a or 12-1b, would you feel more confident about your
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(b)
FIGURE 12-1 Quick. Are more of the dots black or white? You should find (a) to be easier,
quicker, and that your internal confidence in your decision should be higher.

answer, after a brief glance? Which figure are you more likely to make a
mistake on?

We expect that the reader feels more confident about his or her guess for
Figure 12-1a (i.e., “Black has more!”) than for Figure 12-1b (i.e., “Black has
more???”). Experiments in multiple labs have found that this difference in
internal confidence (and a corresponding increase in errors and response time
as trials become more difficult) is not simply a result of there being more dots
in Figure 12-1b than 12-1a, nor of missing a few dots or counting a dot twice
by accident (Cordes, Gallistel, Gelman, & Latham, 2007; Cordes, Gelman,
Gallistel, & Whalen, 2001). As expanded on in the following sections, we
believe that a sense of internal confidence for number thoughts (e.g.,
Figure 12-la resulting in higher confidence than Figure 12-1b) is the most
important psychological experience that the ANS gives rise to—rather than
experiences of any particular cardinality (e.g., “that looks like around
18 dots”)—and that the ANS and all other magnitude dimensions (e.g., time,
length, loudness, brightness; Lourenco, this volume) are in the business of
supporting ordinal comparisons and not absolute judgments (i.e., more-black-
dots, and not approximately-7-black-dots*).”

2. A fortiori, estimation (e.g., “that looks like around 16 dots”) is a case of relative, ordinal compar-
ison (see also Laming, 1997) and probably always involves comparisons to internal standard com-
parators (see, e.g., Izard & Dehaene, 2008; Sullivan & Barner, 2013). A more thorough defense of
this view is beyond the scope of this chapter, but we hope that work in progress, as well as a book in
progress, will be able to explore these issues in greater detail over the coming years.
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One important lesson that can be drawn from viewing Figures 12-1a and
[2-1b is that the internal confidence you feel when viewing them arises
incredibly rapidly, probably even before you have determined your answer
(o the number question (e.g., “Hmm. . .Black has more!”). As a result, internal
confidence, or lack thereof, is felt throughout the “Hmm...” period leading up
to your decision, and informs and guides your evidence-gathering procedures
(e.g., adjusting the parameters of an internal size normalization algorithm,
inspecting with greater scrutiny the visually crowded regions of the image).
For example, prolonged exposure to low confidence trials impairs subsequent
discrimination performance, whereas exposure to high confidence trials
improves it (Odic, Hock, & Halberda, 2012; Wang, Odic, Halberda, &
Feigenson, under review). Much of the recent work in our lab demonstrates
that internal confidence is continuous and quantitatively rich (i.e., not merely
“high, low, or medium”), and may be the primary source for the individual
differences in numerical estimation and discrimination performance in tasks
that measure our abilities 1o estimate and compare numerosities (Odic et al.,
2012; Wang et al., under review). This sense of internal confidence has yet
to be fully explored empirically, and this chapter serves as an introduction
(o ideas that are currently in development.

The second important lesson to draw from viewing Figures 12-1a and 12-1b
is that different observers will experience different levels of internal confidence
for these same numerical judgments. If you happen to have children nearby as
you read this, we encourage you o ask them to give you their opinion about
Figures 12-1a and [2-1b—whether there are more black dots or white dots in
each figure. You should find that they take longer to answer than you would
take (try to convince them to answer without explicit verbal counting), but that
they, like you, answer more quickly for Figure 12-la than Figure 12-1b.

Individual and developmental differences are also found in ANS discrimi-
nation: individuals vary widely in both the speed and accuracy of deciding
whether more of the dots are black or white, and ANS speed and accuracy
gradually improve over development (Halberda & Feigenson, 2008;
Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Odic, Libertus,
Feigenson, & Halberda, in press; Piazza et al., 2010). These individual and
developmental differences are usually measured through Weber [ractions
(w), a key concept describing the acuity or precision ol an individual’s
ANS. For example, w has been found to be impaired in individuals who strug-
gle with dyscalculia, or math learning disability (MLD; Mazzocco,
Feigenson, & Halberda, 2011; Piazza et al., 2010). In what follows, we dis-
cuss the nature of the Weber fraction and the ANS psychophysical model,
and subsequently return to unifying it with the concept of internal confidence.

The third important behavioral signature of note is that children and
adults should also answer [aster and provide more accurate responses for
Figure 12-la than Figure 12-1b. The faster and more accurate answering for
Figure 12-la compared to 12-1b is a universal behavioral signature that every
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organism shows when relying on approximate number representations (i.e., you,
us, children, rats, pigeons). All creatures so far tested have shown this kind of
ratio-dependent responding (i.e., Weber’s law), where we are both faster and
more accurate for “easier” numerical comparisons, and our performance degrades
as the ratio between the two numbers being compared moves closer to 1 (e.g., the
numerosities in Figure 12-1b are closer to a ratio of 1 where the two sets of dots
would be equal in number and there would, therefore, be no correct answer;
Figure 12-1a ratio= 18/8 =2.25; Figure 12-1b ratio=18/16 = 1.125).

Internal confidence, individual differences, and ratio dependence are three
signatures that are of great value for promoting our understanding of the
approximate number system. Research scientists are relying on these patterns
to help inform their understanding of the functioning of the ANS. All formal
models of ANS representation must strive to provide a detailed account for
why these patterns have been observed in every study of ANS performance
yet published and in every animal yet tested. Why do these patterns emerge?
Like the flow of sunspots across the face of the sun was for Galileo (i.e., and
the systematic relationship between the time of year and the angle of their tra-
versal), the elegant systematicity of these response time and error distributions
in numerical tasks is a coded key whose proper description will help unlock a
door unto our more accurate understanding of numerical cognition and the
foundations of our numerical thoughts.

In the remaining sections of this chapter, we review a psychophysical
model that accounts for ratio-dependence, internal confidence, and individual
and developmental differences in the ANS. But researchers have also identi-
fied numerous other signatures of interest; in the end, a sufficient theory of
our approximate number representations should be able to provide explana-
tions for all the observed patterns in the data, and not just a subset of them.
Due to space constraints, we can only briefly review the list of other relevant
signatures:

e Longer response times and higher error rates for younger observers and for
observers who struggle with a math learning disability; each discussed in
connection with Figure 12-1.

e Multimodal representations of number that include vision, audition, tacta-
tion, as well as serial and parallel presentation of collections through these
modalities; e.g., the “voices heard and stars seen” mentioned previously
(Izard et al., 2009; Lipton & Spelke, 2003; Nieder, 2012). Similarly,
cue-combination effects of combining evidence across two or more mod-
alities; e.g., the increased confidence we feel in our estimate of the number
of people who are around us when we can both hear and see them talking
around the campfire (Jordan & Brannon, 2006; Raposo, Sheppard,
Schrater, & Churchland, 2012).

e Relationships between physical parameters of stimulus presentation and a
resulting sense for numerosity, including dimensions such as visual
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density (Dakin, Tibber, Greenwood, Kingdom, & Morgan, 2011; Durgin,
1995) and physically intermixing or separating sets ol stimuli (Gebuis &
Reynvoet, 2012; Price, Palmer, Battista, & Ansari, 2012; Zosh,
Halberda, & Feigenson, 2011); that is, how do our sensory systems lake
perceptual evidence and translate this evidence into a numerical thought?
Relations across various psychological dimensions that may share
representational resources or formats with approximate number, such ag
temporal duration or surface area (Hurewitz, Gelman, & Schnitzer,
2006; Odic et al., in press), as well as effects of forming mappings across
these various dimensions, such as longer lines or tone durations mapping
naturally to larger numerosities, including the SNARC (spatial-numerical
association of response codes) effect wherein observers tend to associate
physical space from left to right with a mental number line ordered from
small numbers on the left to larger numbers on the right (Gevers,
Verguts, Reynvoet, Caessens, & Fias, 2006; Wood, Willmes, Nuerk, &
Fischer, 2008),

Effects of memory and executive control for approximate number repre-
sentation and adjusting to the varying contexts of different display para-
meters (Gilmore et al., 2013; Pailian, Libertus, Feigenson, & Halberda,
under review).

The relation between perceptual effects of numerosity and later cognitive
effects of numerosity, such as the effects of clustering or Gestalt grouping
in a visual display (Im, Zhong, & Halberda, 2013); visual adaptation
elfects (Burr & Ross, 2008; Ross & Burr, 2010); visual and auditory pars-
ing of individual items that form a collection (Franconeri, Bemis, &
Alvarez, 2009; Halberda, Sires, & Feigenson, 2000).

Mappings between nonverbal approximate number representations and
formal math words and symbols; e.g., that “around ten” can be an approx-
imation (Barth, Starr, & Sullivan, 2009; Le Corre & Carey, 2007;
Mundy & Gilmore, 2009; Odic, Le Corre, & Halberda, under review;
Sullivan & Barner, in press), and mappings between approximate number
representations and spatial understandings of a number line; e.g.. that
“6>5" picks out an ordinal direction on the mental number line
(Booth & Siegler, 2006; Opler & Siegler, 2007; Siegler & Booth, 2004).
Neuropsychological evidence, such as evidence for various deficits that
emerge from brain damage, that inform which brain regions support our
ANS representation and what other psychological functions may be sup-
ported by those regions (Dehacne & Cohen, 1997), as well as imaging
studies of the human brain that also help to address these questions; e.g.,
such studies suggest that overlapping brain regions support our representa-
tions of approximate numbers and approximate areas (Castelli, Glaser, &
Butterworth, 2006; Pinel, Piazza, Le Bihan, & Dehaene, 2004).
Neurophysiological recordings that provide data to fuel our theorizing
about the representational format and implementations code for numerical
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representations as well as information about how such codes may differ
across various brain regions (e.g., IPS versus LIP; Nieder, 2005; Piazza
et al., 2004; Roitman et al., 2007).

All of these sources of evidence are important and should eventually inform
theories of approximate number representation.

A PSYCHOPHYSICAL MODEL FOR ANS REPRESENTATIONS

The key to understanding ratio dependence, individual and developmental dif-
ferences, and internal confidence (as well as the other signatures described
previously) is understanding the psychophysical model of the ANS and cor-
rectly understanding what a Weber fraction is.

When we just glance at a picture, even without an explicit task, our expe-
rience of Figure 12-la feels inherently comparative (e.g., “there are more
black dots!”); that is, it would be very surprising if someone glanced at
Figure 12-1a and reported, “Well, I see one specific dot on the bottom right”
(implying that “I see nothing else on the page worth reporting”) or “I see
approximately 18 black dots and nothing else worthy of note.” Displays like
Figures 12-1a and 12-1b have been used to measure human and animal
numerical discrimination performance (i.e., how accurate we are at determin-
ing which color has more dots after just a quick glance); such tasks are called
“discrimination tasks.”

To model our accuracy (and internal confidence) for judgments that
engage the approximate number system (i.e., the “more” judgments we made
for Figures 12-1a and 12-1b), we must first specify a model for the underlying
ANS representations. It is generally agreed that our internal response to a
numerosity in the world is a distribution of activation on a mental “number
line.” These distributions are inherently variable (sometimes called “noisy”)
and do not represent number exactly or discretely (Dehaene, 1997;
Gallistel & Gelman, 2000). This means that there is some error each time they
represent number, and this error can be thought of as a spread of activation
around the number being represented. The mental number line is often mod-
eled as having linearly increasing means and linearly increasing standard
deviations (Gallistel & Gelman, 2000).3 In such a format, the representation
for, e.g., approximately-7 is a normal (Gaussian) probability density function
that has its mean at 7 on the mental number line and a smooth degradation to
either side of approximately-7; hence, approximately-6 and approximately-8

3. The mental number line has also been conceived of as logarithmically organized with constant
standard deviation (Dehaene, 2003). Either this format or the linear one in Figure 12-2a results in
the ratio-dependent performance that is the hallmark of the ANS. We rely on the linear format, as
it generates fairly intuitive graphs (e.g., Cordes et al., 2001; Gallistel & Gelman, 2000; Meck &
Church, 1983, Whalen et al., 1999).
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on the mental number line are also highly activated by instances of sevenness
in the world.

In Figure 12-2a, we have drawn curves that depict the ANS representa-
tions for numerosities 4-10. You can think ol these curves as representing
the location and spread ol activity generated on a mental number line by a
particular collection of items in the world with a dilferent bump for each
numerosily you might experience (e.g., 4, 5, or 6 black dots). Rather than acti-
vating a single discrete value (e.g., 7), the curves are meant to indicate that a
range ol activity is present each time a collection of (e.g., 7) ilems is
presented.

In fact, the bell-shaped, or Gaussian, ANS representations depicted in
Figure 12-2a are more than just a theoretical fantasy; “bumps” like these have
been observed in neuronal recordings ol the cortex of awake behaving
monkeys as they engage in numerical discrimination tasks (e.g., shown an
array of 7 dots, neurons that are preferentially tuned to representing
approximately-7 are most highly activated, while neurons tuned 1o
approximately-6 and approximately-8 are also fairly active, and those tuned
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FIGURE 12-2  (a) The psychophysical model describes ANS representations as Gaussian distri-
butions along an ordered number line. As discussed in the text, the Weber [raction is best concep-
talized as a scaling factor for how the standard deviation in these distributions linearly increases
with the mean. (b) Discrimination performance in the ANS follows a smoothly increasing function
with ratio. For this idealized observer with a Weber [raction of 0.125, the ratio at which he or she
will perform at about 75% is 1.125.
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to approximately-5 and approximately-9 are active only slightly above their
resting state; Nieder, 2005; Nieder & Miller, 2004). These neurons are found
in the monkey brain in roughly the same region of cortex that has been found
to support approximate number representations in human subjects in MRI
studies (Piazza et al., 2004).

It is important to keep in mind that this type of spreading activation is
common throughout the cortex, and it is not unique to ANS representations.
For example, we (and a rat) will also have neurons in our hippocampi that
are preferentially tuned to particular locations in our office/bedroom/cramped-
but-well-ventilated-cage that represent our position in space as we move
around, with a spreading activation quite similar to the spreading activations
depicted in Figure 12-2a (just with the spread occurring in the two-
dimensional mental space of our floor plane rather than the one-dimensional
space of numerosity; Fyhn, Molden, Witter, Moser, & Moser, 2004;
Hafting, Fyhn, Molden, Moser, & Moser, 2005; Moser, Kropff, & Moser,
2008). That is, approximate number representations obey the same principles
of “noisy” approximate coding that operate quite broadly throughout the
mind/brain.

This point is worth highlighting because it invites you to recognize that,
whatever theory you end up preferring for approximate number system repre-
sentations, that theory must make use of constructs that can apply quite
broadly across cortical and subcortical representations. The differences in
response times, error rates, and internal confidence that we noted during our
discussions of Figures 12-1a and 12-1b have also been observed for the vast
majority of the psychological dimensions that humans and other animals rep-
resent (e.g., scalar variability and ratio-dependent performance for time, num-
ber, distance, flavor concentration, electric shock, perceived weight, density,
viscosity; Cantlon, Platt, & Brannon, 2009; Gescheider, 1997; Odic, Im,
Eisinger, Ly, & Halberda, under review). Many psychological dimensions rely
on coding schemes based on scalar variability and internal confidence (signal
fidelity) that operate similarly to ANS representation.

In Figure 12-2a, as the number of items in an array presented to an
observer increases from 4 to 10, the standard deviation of the bell-shaped
curves that represent the numerosity increases, resulting in a flattening and
spreading of the activations (note the peakier curve for approximately-4 and
the broader curve for approximately-9 in Figure 12-2a). This increase in
spread with increasing number is the basis for the hallmark properties of the
ANS and, as discussed previously, is similar to discrimination in many other
dimensions (e.g., brightness, loudness), discrimination dependent on ratio and
not their absolute number (i.e., scalar variability, or Weber’s law, described
later). When you are trying to discriminate one numerosity from another using
the Gaussian representations in Figure 12-2a, the more overlap there is
between the two Gaussians being compared, the less accurately they can be
discriminated.
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Critically, the overlap between Gaussian distributions is also the source for
the differences in accuracy, RT, and internal conlidence we experienced when
viewing Figures 12-1a and 12-1b. Numerosities that are closer together have
more overlap in their curves on the mental number line, making them harder
lo separate from each other to determine which collection is more numerous.
Ratios that are closer to |, where the two numbers being compared are closer
(e.g., Figure 12-1b), give rise to Gaussian ANS representations with greater
overlap, resulting in poorer and slower discrimination (i.e., “ratio-dependent
performance”)—e.g.. it feels easier to decide that there are more black dots
than white dots when looking at Figure 12-1a than at Figure 12-1b (and obser-
vers would make fewer errors, and decide faster, when shown Figure 12-1a
than  Figure 12-1b). Looking at the curves, and their overlap, in
Figure 12-2a helps you to picture why errors, response times, and internal
confidence may change as the numerosities being compared become larger
and closer in proportion.

To see how the bell-shaped representations of the ANS in Figure 12-2a
can predict differences in errors, response times, and internal confidence,
consider that the curve for approximately-5 in Figure 12-2a is broader than
the curve representing approximately-4 (i.e., approximately-5 has a larger
standard deviation than approximately-4). These two curves are fairly easy
to visually tell apart in Figure 12-2a. But, as one increases in number (i.e.,
as one moves right in Figure 12-2a), the curves become more and more simi-
lar looking (e.g., is curve 9 higher and skinnier than curve 10, or do they look
pretty much the same?). As the ANS representations become more similar—,
i.e., as there is more overlap between the representations of the two numerosities
to be discriminated—discrimination becomes harder, is more error-prone, and
takes longer.” These bell-shaped representations predict that discrimination
should smoothly become more and more difficult as the two numerosities
become more and more similar.

In the ANS, it is not simply that larger numbers are harder to discriminate
across the board. For example, an observer’s performance at discriminating
approximately-16 from approximately-20 (not shown in Figure 12-2) is pre-
dicted to be identical (in error rate, response time, and internal confidence)
to the observer’s performance at discriminating approximately-8 [rom
approximately-10—as both of these trials would involve the same ratio (i.e.,
10/8=1.125=20/16). Although the curves for approximately-16 and
approximately-8 do not have the same overall shape (e.g., the curve represent-
ing approximately-16 would be broader and [latter than the curve representing

4. This example based on the height and skinniness of the curves is simply to generate the intui-
tion that discrimination becomes harder as the curves become more similar. Actual discrimination
in the ANS is not based on the heights of the curves. but on the similarity of the activations eli-
cited by the two sets of quantities (shown graphically in Figure 12-2a) and the amount of overlap
between the two curves representing these numerosities.
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approximately-8), it is the amount of overlap between the curves being
compared that determines error rates, response times, and internal confidence.
Because the standard deviation (SD) of the curves increases linearly
with the mean (SD=p * w), the curves representing approximately-8
and approximately-10 will overlap in area to the same extent that
approximately-16 overlaps with approximately-20.°

Behavioral performance in tasks that engage the ANS is richly textured and
exquisitely well structured. What do we mean by this? Observers don’t simply
“do a bit worse” as the numbers become more similar; nor do they feel “just a
bit less confident.” Rather, each observer’s error rate, response time, and inter-
nal confidence are exquisitely well predicted by the bell-shaped representa-
tions in Figure 12-2a, and the changes in observers’ performance as a
function of trial difficulty is very systematic. This systematicity is what any
candidate theory of approximate number representations must account for.

There are, however, numerous misunderstandings about Weber’s law (i.e.,
ratio-dependent performance) and especially the Weber fraction (w), which
indexes individual differences in ANS accuracy and internal confidence. In
what follows, we elaborate on the nature of the Weber fraction and go through
some of the most common misconceptions about it, including that the Weber
fraction indexes just-noticeable differences, that it is defined as 75%
accuracy, elc.

How to Think of a Weber Fraction (w) in the Approximate
Number System (ANS)

What is a Weber fraction (w), and what does it tell us about an observer’s
approximate number system (ANS) representations? Some common misunder-
standings of a Weber fraction include that it is (1) the fraction by which a stim-
ulus with numerosity n would need to be increased in order for a subject to
detect and report the direction of this change resulting in 75% correct perfor-
mance across trials (i.e., that it is the “difference threshold” or the “just notice-
able difference,” JND), (2) the smallest ratio at which subjects will be
significantly above chance in a numerical discrimination task, and (3) the mid-
point between subjective equality of two collections and asymptotic perfor-
mance in numerical discrimination. Rather, the Weber fraction is all of these
things, and it is also simpler, more abstract, and more basic than any of these.
After illustrating some problems with the above views, we sketch a proposal
that the Weber fraction can be understood as an internal scaling factor that

5. Note also that it is the numerical similarity between the sets that is important for determining
how difficult a trial might be, and not their absolute size. Bigger is not always harder; it depends
on the numerical distances involved. For example, 7 black versus 8 gray dots is a harder trial than
17 black versus 30 gray dots—because the ratio 30:17 is larger than the ratio 8:7. This is some-
times called the “size effect.”
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indexes the amount of internal precision (i.e., signal lidelity) of every approxi-
mate number representation, and that the Weber [raction, so understood, can be
used to determine the standard deviation of every numerosily representation
within the ANS, and can turn knowledge of any one approximate number rep-
resentation into any other approximate number representation.

Consider Figure 12-2a to represent the ANS number representations for a
particular individual who has a Weber fraction =0.125. In the following sec-
tions, we describe what role this number (0.125) is taken to play by each of
the four conceptualizations listed earlier. In the end, we suggest that under-
standing a Weber fraction to be an internal scaling factor indexing the internal
precision, confidence, or signal fidelity of a person’s approximate number
thoughts is the most valuable and true conceptualization. We suggest that this
number (0.125), so understood, tells us how imprecise, or “noisy,” a person’s
approximate number thoughts are.

The Weber Fraction Is Not a Just Noticeable Difference (JND)

If you present the hypothetical subject (whose ANS representations are
depicted in Figure 12-2a) with the tasks we did with Figures 12-1a and 12-1b
(i.e., the task of determining which of two collections has the greater number
ol dots) on a trial where there are 16 gray dots, this subject would require an
increase of 2 dots from this standard (n,=16; 16 @ .125=2; n,=164+2=18)
in order to respond that black (71 =18) is more numerous than gray (11, =16)
on 75% of the trials that present these two numerosities.” That is, a subject’s
Weber fraction can be used to determine the amount by which you would need
to change a particular stimulus in order for the subject to correctly determine
which number was larger on 75% ol the trials (where chance =50%). Con-
ceived in this way, the Weber fraction describes a relationship between any
numerosity and the numerosity that will consistently be discriminated from this
standard. This gives one way of understanding why you might choose 75% cor-
rect performance; however, to specify what “consistently discriminated from”
might mean, you could also choose some other standard (e.g., 66.7% correct, or
any other percent above 50%). From this point ol view, which is often the dom-
inant one taught in psychophysics, the point is to estimate the steepness of the
linear portion of the psychometric function, or the slope of the linear rising por-
tion of this function (depicted in Figure 12-2b), and 66.7% would work for
such purposes just as well as 75% or 80%.

However, as we will see below, the seemingly arbitrary reasons for choos-
ing 75% correct as an index ol performance are somewhat justified once we
understand the mathematical relationship that holds between correct discrimi-
nation performance, the Weber fraction (w), and the standard deviations of the
underlying Gaussian representations.

6. Note, we use “@" throughout to indicate multiplication.
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The Weber Fraction Is Not the Smallest Discriminable Ratio

Some readers, more familiar with research on the acuity of the ANS in infants
(Izard et al., 2009; Libertus & Brannon, 2009; Lipton & Spelke, 2003; Xu &
Spelke, 2000; Xu, Spelke, & Goddard, 2005) and less familiar with the literature
on adult psychophysics, may have come to believe that a Weber fraction
describes the ratio below which a subject will fail to discriminate two numeros-
ities (e.g., 6-month-olds succeed with a 1:2 ratio and fail with a 2:3 ratio; Xu
et al., 2005). This suggests a categorical interpretation of the Weber fraction
(e.g., a threshold where you will succeed if a numerical difference is “above
threshold™ and fail if it is “below threshold”). That is, some may have come (o
believe that performance should be near perfect with ratios easier than a subject’s
Weber fraction and at chance for ratios harder than a subject’s Weber fraction.

Categorical performance, however, is not observed in typical performance
where a large number of trials test a subject’s discrimination abilities across a
wide range of ratios (Halberda & Feigenson, 2008; Halberda et al., 2012;
Piazza et al., 2010). In such cases, behavioral performance shows a smooth
improvement from a ratio of 1 (where n; =n, and there is no correct answer)
toward increasing accuracy; and not a “step function” from at-chance perfor-
mance below the Weber fraction to above-chance performance above the
Weber fraction.

Consider again the simple task of being briefly shown a display that includes
some black and white dots and being asked to determine on each flash if there
were more black or more white dots. Percent correct on this numerical discrim-
ination task is not a step function with poor performance “below threshold” and
good performance “above threshold,” but rather is a smoothly increasing func-
tion from near-chance performance to consistent success. This performance and
the range of individual differences, gathered from more than 10,000 subjects
between the ages of 8 and 85 years of age participating in this type of numerical
discrimination task, can be seen in Figures 12-3a and 12-3b.

The actual behavioral data from subjects seen in Figure 12-3a, and the mod-
eled ideal behavior seen in Figure 12-2b, suggest that the subjects will always be
above chance no matter how small the difference between n; and n, (e.g., in the-
ory, even a baby will be “above chance” at seeing that 10,001 black dots is
numerically more than 10,000 gray dots; see Green & Swets, 1966); what
changes is not whether an observer will succeed or fail to make a discrimination
but rather the number of trials an experimenter would have to run in order to find
a statistically significant difference in performance on the most difficult trials.
Consider that the region nearest to equality (a ratio of 1) is the region of most
rapid improvement in every observer’s performance (e.g., Figures 12-3a and
12-2b). That is, subjects’ performance shows more improvement when the ratios
being tested increase from 1.01 to .1 than they show when the ratios increase
from 1.33 to 1.4. There are two take-home points that we’d like to stress: (1) even
a baby should be able to tell that 21 black dots is numerically more than 20 gray
dots (what changes is the number of trials we’d have to run to be able to show that
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FIGURE 12-3  ANS performance from more than 10,000 participants. (a) ANS discrimination
smoothly increases with ratio: (b) Weber fractions initially become better (i.e., become lower)
with age, and eventually plateau around age 30, and subsequently slowly become worse. Note that
these graphs present previously unpublished data collected on testmybrain.org and panamath.org
during 2008 (see Halberda et al.. 2012).

infants detect this difference), and (2) it is al the hardest ratios (e.g., .01 versus
[.1) that we see the most rapid improvements in numerical discrimination perfor-
mance (and not at some “threshold™ or fraction that changes from “at chance™ 1o
“above chance™).”

7. However, we would also like to note that, within the practical limits of testing real babies, the
infant literature’s method of looking for a change from at-chance performance to above-chance
performance is a quite reasonable approach. It allows one to roughly locate the Weber fraction
ol subjects who, like infants, cannot participate in the large number of trials it takes to achieve
the smooth data seen in Figure 12-3a. We have published papers that use this kind of approach,
and it is a fine thing to do. But we're suggesting that it would be best if we do not allow such
practical concerns (o inspire a faulty foundation on which to grow our theory-based intuitions
ol what is possible and impossible for the ANS and other magnitude representations.
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Even for infants, then, and untrained observers, performance in numerical
discrimination tasks should not shoot up from “at chance” for harder ratios to
“significantly above chance” at easier ratios. Melissa Libertus and colleagues
have ingeniously demonstrated that infants looking time to numerically vary-
ing stimuli can reveal a smoothly graded function of increasing looking that is
quite similar to what is seen in Figure 12-3a (Libertus & Brannon, 2009,
2010). In these tasks, infants are shown a display of dots at a particular ratio,
and their looking time to the display is measured; the amount of time infants
spend looking at the display is a continuous function dependent on the ratio:
as ratios get harder and harder, infants gradually look less and less. This work
highlights, in dramatic fashion, that misunderstanding a Weber fraction to
indicate something about a change from chance performance (or an
“inability to distinguish”) to a sudden ability to distinguish numerically vary-
ing stimuli will generate the wrong intuitions (i.e., in theorists, teachers, and
students).

The Weber Fraction Is Not the Midpoint between Subjective
Equality and Asymptotic Performance

One common approach to localize the Weber fraction at some point along the
smoothly increasing curve in Figure 12-3a is at 75% accuracy—the midpoint
between subjective equality of the two numerosities being compared (without
biases, occurring at a ratio= 1, where n;=n,) and asymptotic performance
(typically occurring nearing 100% correct, although asymptotic performance
could be lower in unskilled subjects, resulting in a midpoint that falls at a per-
cent correct lower than 75%; for example, see Halberda & Feigenson, 2()08).8
Hence, to calculate a Weber fraction, a researcher may take the ratio at which
the observer performed at 75% and then subtract 1 (e.g., if 75% performance
is at a ratio of 1.25, then the w is estimated at 0.25).

If observers behave optimally and if the Weber fraction is within a partic-
ular range, this shorthand does produce the correct value. In Figure 12-2b, we
have drawn the expected percent correct for the ideal subject in Figure 12-2a
whose Weber [raction (w)=0.125 as derived by a model from classical psy-
chophysics. This idealized subject would perform at 75% around ratio 1.128.

There are two challenges, however, with conceptualizing the Weber frac-
tion in this manner. First, the mathematical relation between w (conceptualized
as a scaling factor) and the ratio at 75% is not constant: whereas an observer with
aw of 0.125 will perform at about 75% around ratio 1.125, an observer with a
w of 0.5 will perform at around 75% around a ratio of 2.0, not 1.5!

8. Typically, behavioral performance will cross 50% at ratio= 1 for an observer who has no bias to
choose black or white and who is simply guessing at chance =50% when n; = n, (#black =#gray);
and it may never reach 100% no matter how easy the trials become (e.g., because everyone has some
tendency to make a miss-hit on the response keys from time to time, even if merely from sheer bore-
dom with all those dots).
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Second, understanding of the Weber fraction as the midpoint between sub-
jective equality and asymptotic performance misses the deeper continuous
nature of discrimination within the ANS. For example, this focus on 75%
has led many researchers throughout history to believe that accuracy is the
theoretical variable they are hoping to measure. For example, many readers
may be familiar with “staircase” methods or adaptive procedures that adjust
trial difficulty in response (o the subject’s performance in an attempt to focus
the majority of trials on a position where the subject is at 75% correct (as if
this point were of special importance). As we see in the next section, there
is nothing at all special about 75% correct performance. The Weber [raction
(w), properly understood as a scaling factor for determining internal variabil-
ity for every approximate number representation, perfectly predicts perfor-
mance at 75% correct, or 85%, or 51.3756% correct, and everything in
between; and it determines performance along the entire smoothly improving
curve seen in Figures 12-2b and 12-3b.”

Weber Fraction Conceptualized as a Scaling Factor

Let us consider a fourth way of understanding the Weber fraction: as a scaling
factor that indexes the amount ol “noisiness” surrounding every numerical
representation of the ANS.

Consider again the Gaussian curves in Figure 12-2a. The spread ol each
successive numerosity from 4 to 10 is steadily wider than the numerosity
before it. This means that the discriminability of any two numerosities is a
smoothly varying function, dependent on the ratio between the two numeros-
ities to be discriminated. In theory, such discrimination is never perfect
because any (wo numerosities—no matter how distant from one another—will
always share some overlap. At the same time, discrimination will never be
entirely impossible, so long as the two numerosities are not identical, because
any (wo numerosities, no matter how close (e.g., 67 and 68), will always have
some nonoverlapping area where the larger numerosity is detectably larger
(Green & Swets, 1966). Correct discrimination may occur on only a small
percentage of trials if the two sets are very close in number, but it will never
be impossible (up to the limits of the sensory detector). This motivates the
intuition that percent correct in a numerical discrimination task should be a
smoothly increasing function from the point ol subjective equality to asymp-
totic performance. The smooth increase in percent correct as a function of

9. For those interested in practical concerns, the most reliable and stable performance for human
subjects, where trials are neither too easy nor oo hard. occurs at around 86% correct performance
(let’s call it the “Goldilocks position™) and not at 75% correct (this factoid garnered from model-
ing work in our lab, and our practical experiences testing subjects across a wide range of ability
levels and ages, and informed by conversations with the great and stimulating Zhong-Lin Lu). So,
even for practical reasons (beyond theoretical concerns) we should not focus on 75% as something
special.
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ratio is no accident. It is the smoothly increasing spread in the underlying
Gaussian representations depicted in Figure 12-2a that is the source of the
smoothly increasing “Percent Correct” ideal performance in Figure 12-2b.

Noting the smoothly increasing spread of the Gaussian representations in
Figure 12-2a might motivate you to ask what is the parameter that determines
the rate of increase in standard deviation with numerosity, and what determines
the amount of spread in each Gaussian representation on the mental number
line? In fact, it is the Weber fraction that determines the spread of every single
representation on the mental number line by the following formula
(SDy1 =X, @w). The standard deviation (SD) of the Gaussian bell-shaped curve
representing any particular numerosity on the mental number line is the central
tendency for that representation (¥,;) multiplied by the Weber fraction (w).

Why is this the case? Well, intuitively, it is the standard deviations of the
underlying Gaussian representations that determine the amount of overlap
between the curves that represent any two numerosities, and it is the amount
of overlap between the numerosities that determines how well any two numer-
osities can be discriminated. The categorical views of the Weber fraction as a
kind of threshold between successful discrimination and failure, or as the mid-
point between subjective equality and asymptotic performance, choose to
focus on only one particular point of what is actually a continuous and smooth
function of increasing success at discrimination. As a result, this entire func-
tion is determined by the Weber fraction because this parameter describes the
standard deviations of every single numerosity representation in the ANS—
and therein the degree of overlap between any two numerosities on the mental
number line.

The Weber fraction (w) is the constant that describes the amount of preci-
sion for each observer’s ANS number representation. It is a scaling factor by
which you could take any one of the curves in Figure 12-2a and turn it into
any of the other curves in Figure 12-2a in an accordion-like fashion. In the
linear model depicted in Figure [2-2a, the analog representation for any
numerosity (e.g., n=7) is a Gaussian random variable with a mean at n
(e.g., n="7) and a standard deviation of (n e w).'("” This means that for a sub-
ject who has a Weber fraction of 0.125, the ANS representation for n=7 will
be a bell-shaped normal curve with a mean of 7 on the mental number line
and a standard deviation of 0.875=0.125 e 7. By substituting any number
you like for n, you can easily determine the shape of the underlying ANS rep-
resentation without ever having the observer engage in a numerical

10. Note that signal compression or expansion is also important because it can change the posi-
tion of representations along the mental number line (for detailed discussion, see Odic et al., under
review)—a detail that does not concern us for the present moment.

11, Note also that the relationship of the Weber fraction (w) to internal confidence is also true for
a logarithmic model of numerosity representation, with any differences in details not relevant for
the present discussion,
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discrimination task that compares two numbers. This illustrates the power of
understanding the Weber [raction as an index of signal fidelity, internal con-
fidence, or internal noise. Rather than simply telling us something about how
well a subject will do at discriminating two numbers “near their just notice-
able difference,” the Weber fraction (w) tells us the shape and overlap of
every single number representation along a mental number line. The Weber
fraction is about all of the representations, not just the ones “near threshold.”

Understood in this way, the Weber fraction is not even specific to the task
of numerical discrimination; indeed, it is wholly independent and prior to dis-
crimination. An animal that, bizarrely, could only represent a single numerical
value in its ANS (e.g., could represent only approximately-7 and no other
numbers) and could therefore never discriminate 12 from any other number
(i.e., could not even perform a numerical discrimination task) would nonethe-
less have a Weber [raction, and we could measure it!

Meet Justin The Rat

In this section, we want to briefly discuss the beautifully limited mind ol an
animal named “Justin The Rat,” which, strangely, can only represent the num-
ber approximately-7 and no other number. Justin The Rat can represent all the
other things that we represent (e.g., dots, colors), but for numbers, he has only
one thought, and that is the thought approximately-7.

Question: Hey, Justin The Rat, how many food pellets did you just eat?
Answer: Approximately-7.

Question: On another topic, Justin The Rat, surely you do not believe
in God?

Answer: Well, not in an interventionist Christian god, if that’s what
you mean.

Question: Dear Justin The Rat, on a scale from 1| to 10, with 10 being
“smoking hot” and 1 being “let’s not talk about this,” how sexy am
[ really?

Answer: Approximately-7.

You get the idea.

How well would Justin The Rat do il we asked him to choose which array
has more dots while showing him 16 gray dots and 18 black dots? It may
seem predestined that Justin The Rat would be terrible at a numerical discrim-
ination task involving two sets of dots, each with more than 7 dots—owing to
his unique brain abnormality that limits his numerical thoughts to approxi-
mately-7 and nothing else. For instance, how would we teach him such a task
or measure his performance? And, is it even possible to have a living creature
with numerical cognitive abilities so impaired? Does Justin The Rat have a
Weber fraction (w), and how would we measure it? To answer these ques-
tions, we invile you to lake our earlier, technical, sections as a point of
departure.
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As we have seen, a Weber fraction can be understood to be a scaling factor
that determines the standard deviation of the bell-shaped curves representing
each and every number representation in a subject’s approximate number sys-
tem (ANS). Numerical discrimination tasks (e.g., Figures 12-la and 12-1b)
are not the only way of measuring this type of internal scaling parameter.

Although production tasks (such as the “tap your finger n times” task;
Whalen, Gallistel, & Gelman, 1999) and discrimination tasks (such as the
“who has more” task; e.g., Figure 12-1) have often been discussed separately,
they measure theoretically identical aspects of ANS representations. For a
“tap your finger n times” task, researchers generate a measure of the coeffi-
cient of variation (CoV or CV), which is the standard deviation of the number
of presses divided by the mean number of presses. For example, ask a subject
to press a button 9 times too quickly for explicit counting while saying the
word “the” to further block verbal counting. The result will be a bell-shaped
distribution of responses; the subject will most often press 9 times, but will
also sometimes press 8 or 7, and sometimes press 10 or 11 or 12, etc. Graph-
ing the number of instances where the subject presses 7, 8, 9, 10, 11, etc.,
times when requested to press 9 times will reveal a smooth bell-shaped curve
centered around 9 (similar to the curve for 9 in Figure 12-2a). Take the stan-
dard deviation of this bell-shaped curve and divide it by the mean of this
curve to return the CV for this subject (i.e., CV,9 = SD,0/Xy9). For this task,
which also engages the ANS, CV is expected to be constant across all num-
bers probed. That is, ask the same subject to do the study again pressing,
e.g., n=14 times, build a similar-looking (but fatter) bell-shaped curve cen-
tered around 14, divide the standard deviation of this curve by the mean of
this curve, and you should get the same CV that you got for the version of
the task in which the requested number of presses was 9 (Cordes et al.,
2001; Whalen et al., 1999); CV,14 =SD,4/Xy4; and, CV,14~CV,9 .

The source of the bell-shaped curves in a numerical production task is not,
in theory, simply mispresses or mistakes (a curve built out of mispresses
would not be a bell-shaped Gaussian, but a more narrow, binomial, non-
Gaussian, curve; Cordes et al., 2001). The source of the bell-shaped curves,
and the fatness of the curves, is the variability in the underlying representa-
tions of the ANS. And this leads to a little-remarked-upon identity: an obser-
ver’s CV and his or her Weber fraction (w) should, theoretically, be identical
numbers.

Note, CV, =SD,/%,. And, as we mentioned previously, the SD of the
underlying ANS representation for any number can be determined using a
subject’s Weber fraction (w) as an internal scaling parameter, i.e.,
SD, =X, ew. Rearrange this equation and you get SD,/x,=w, the same
equation that we use to calculate CV (i.e., SD, /¥, =CV,). That is, CV=w.

This identity makes intuitive sense upon reflection. As subjects try to tap
their finger quickly in a numerical production task, they give up on verbal
counting and allow their ANS to assess when the target number of taps has
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been reached. But these ANS representations are “noisy,” leading observers (o
sometimes tap too many times and sometimes tap too few times over the
course of many trials. In this way, the source of the errors in a “tap your
finger” task is the noisy representations of the ANS. The source of the errors
in a numerical discrimination task (e.g., Figures 12-1a and 12-1b) is also the
noisy representations of the ANS. The coelficient of variance (CV) and
Weber [raction (w) are two ways of estimating the imprecision, or variability,
in these underlying representations. And so, CV and w are two ways of mea-
suring the same thing.

Thus, to estimate the Weber fraction for Justin The Rat—an animal that,
strangely, can represent only approximately-7—itrain him to press a button 7
times, run many trials, calculate CV, and CV =w (for an alternative method,
see Odic, Im, et al., under review, and visit www.panamath.org/psimle). Here,
you have found the Weber [raction [or an animal without ever having that ani-
mal compare two numbers or see two collections. This is an illustration of the
inductive power of understanding the Weber [raction (w) to be an internal
scaling factor. A Weber fraction need not require an understanding of failure
or success at numerical discrimination, nor even the ability to make a numeri-
cal discrimination. Rather a Weber [raction (w) is simply a way of indexing
the internal precision (aka signal fidelity, internal confidence, noise) in a per-
son’s ANS approximate number representations.'”

How a Weber Fraction (w) Indexes Individual Differences
in ANS Precision

The inductive power of understanding the Weber fraction (w) to be an internal
scaling factor is further highlighted when we compare the Weber fractions of
different individuals. Individuals differ in the precision of their ANS represen-
tations. Some people have less precise approximate number representations,
and some people have more precise representations (Halberda & Feigenson,
2008; Halberda et al., 2012). In Figure 12-4a, we have illustrated some idea-
lized curves that display the underlying ANS representations for a subject
whose w=0.125 and, in Figure 12-4b, lor a subject whose w=0.20. Cru-
cially, you can see that the subject in Figure 12-4b has a greater degree of
overlap between the bell-shaped curves of their ANS representations than
the subject in Figure 12-4a (recall, a bigger Weber fraction means more noise
and fatter curves). It is this overlap that leads to differences in internal

12. In full disclosure, production tasks and discrimination tasks may not always be measuring the
same thing, because in fact, it is unlikely that any psychological task is measuring only one thing.
No matter how simple you make the task, it is likely that many different psychological factors are
required for encoding, response generation, and decision making. As such, in practice, measured
CV will not perfectly predict measured w. A scientifically productive question CV might be,
“How might the differences in measured estimates of CV and w help us determine the variety
of psychological variables these tasks have in common and those that they have distinctly?”
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FIGURE 12-4 Individual differences in the ANS. The difference between an individual with a
better (lower) Weber fraction in (a) and an individual with a worse (higher) Weber fraction in
(b) is entirely in the variability of the ANS representations: higher overlap between the represen-
tations results in lower accuracy (illustrated in [c]) and lower confidence and higher RT.

confidence, error rates, and response times—and to the difficulty in discrimi-
nating two stimuli that are close in numerosity. The hypothetical subject in
Figure 12-4b would have poorer performance than the subject in Figure 12-4a
in a numerical discrimination task (e.g., Figures 12-1a and 12-1b).

The ideal performance in Figure 12-4c also shows the smooth gradual
increase in percent correct as a function of ratio that we have been discussing.
In Figures 12-3a and 12-3b, we saw data from more than 10,000 individuals
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who played a numerical discrimination task online. Every one of the more
than 10,000 observers in this sample obeyed this kind of gradual increase in
percent correct (seen in Figure 12-3a) from a ratio ol 1 (where the number
of black and gray dots are equal) to easier ratios like 2 (where there might
be 20 black dots and 10 gray dots; 20/10=2). What changes from observer
lo observer is how steep the left side of the performance curve is (NB, you
an see this difference in Figure 12-d¢ for the two hypothetical subjects
who differ in their Weber fraction).

In Figures 12-3a and 12-3b, individual differences are shown by indicating
the range of performance from the lower 10™ to the upper 90" percentile rank of
the more than 10,000 observers (i.e., the lower bound of the gray-shaded region
in Figure 12-3b indicates the average performance of the 90" percentile group
[i.e., best], and the upper bound of the gray-shaded region indicates the average
performance of the 10th percentile group [i.e., worse]; note that the upper and
lower bounds are reversed for Figure 12-3a because higher percent correct
translates to lower Weber [raction (w), i.e., lower internal noise). Figure 12-
3b shows how the average Weber fraction improves over development.

A steeper, quicker rise in the psychometric function (Figures 12-4¢ and
12-3a) indicates better sensitivity, better discrimination abilities, more precise
ANS representations (e.g., sharper bell-shaped humps in the ANS, with less
“noise™; smaller standard deviations for each hump), and this is indexed by
the subject having a smaller Weber fraction (Figures 12-4a, 12-4b, and 12-3b)
(i.e., a smaller Weber fraction indicates less noise in the underlying ANS
representations).

The values for the Weber fractions in Figure 12-4 have been chosen so as
to illustrate another value of understanding the Weber fraction to be an inter-
nal scaling factor: it empowers comparisons across individuals and formal
models of individual differences. Converting the Weber fraction for each of
these subjects into the nearest whole number fraction reveals that the Weber
fraction for the subject in Figure [2-4a is 8:9 and for the subject in
Figure 12-4b is 5:6 (i.e., 9/8 =1.125; 6/5=1.20). Investigating the Gaussian
curves in Figure 12-4a and 12-4b reveals that the bell-shaped curves for the
numerosities 8 and 9 for the subject in Figure 12-4a are identical in shape
o the bell-shaped curves for the numerosities 5 and 6 for the subject in
Figure 12-4b. This too is no accident. The only parameter that has been
changed in the construction of Figures 12-4a and 12-4b is the Weber [raction
for the subject. This single parameter determines the spread in the curves that
represent every possible numerosity in the ANS of each subject.

In this way, understanding the Weber [raction to be an internal scaling fac-
tor that determines the spread of every ANS number representation not only
empowers us lo compare one number representation to another within a par-
ticular subject (e.g., the lesson we learned from Justin The Rat), but also
empowers us Lo compare across individuals and to create mathematically trac-
table predictions about how the ANS representations ol one person (e.g., the
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subject in Figure [2-4a) relate to the ANS representations of another (e.g.,
the subject in Figure 12-4b). This is not the case for any other estimate of
individual differences that you might prefer to use (e.g., percent correct, aver-
age response time, the slope of error rate as a function of ratio, the slope of
response time as a function of ratio), although these may be used as rough
approximations (e.g., just like subtracting 1 from the 75% ratio can, in some
circumstances, be used as an approximation).

Two important goals of psychology are to measure and to understand the
sources of individual differences in a wide range of social behaviors and cog-
nitive abilities. A valuable approach to approaching these challenges is to
develop a formal model of the particular aspect of the psychological system
that you hypothesize is different from one person to another—such as the pre-
cision and accuracy of the bell-shaped representations of the ANS. When we
understand a Weber fraction (w) to be an internal scaling factor that indexes
the precision of each person’s approximate number thoughts, we find that this
allows us to directly translate (in a formal sense, seen graphically in
Figures 12-4a to 12-4c¢) from one individual’s ANS precision to another indi-
vidual’s ANS precision; and to build specific proposals for the shape and acti-
vation of each numerical representation within each individual’s ANS.

There remains important work to be done, both practical and theoretical, to
ensure that we are correctly measuring subjects” Weber fractions (e.g., how
much display time is optimal? Does the Weber fraction change if we present
auditory stimuli rather than visual stimuli?). Also, we must strive to ensure
that our formal models of a Weber fraction reflect the actual behavior and
neuronal activity of our subjects of interest. This is an ongoing process for
our research field, and we do believe there are major discoveries still to be
made. But, we also believe that understanding a Weber fraction as a scaling
factor is an important foundation for studying individual differences, and for
beginning a journey of making new discoveries that will help us build more
appropriate and accurate models of cognition.

THE RELATION BETWEEN THE WEBER FRACTION
AND INTERNAL CONFIDENCE

One further lesson we can draw from our experiences with Figures 12-1a and
12-1b is the power of internal confidence to inform how we search and inter-
act with the world. If you happen to still have children nearby, you might try
asking which picture (Figure 12-1a or 12-1b) they think looks like the easier
picture to answer without actually making the judgment. Which picture will it
be easier to figure out “who has more?” We imagine that you would find that
even without counting, children will judge that Figure 12-1a will be the easier
trial. We believe that this ability to respond which figure would be easier to
answer emerges from our sense of internal confidence for ANS questions
and displays, which directly stems from the internal variability in the



328 PART | 11l Theoretical Perspectives and Evolutionary Foundations

Gaussian (bell-shaped) representations (whose value is scaled by the Weber
fraction). In this way, the psychophysical model outlined above of the Weber
[raction as a scaling paramelter provides a unified explanation for the ratio sig-
natures, individual differences, and the source of internal confidence in our
approximate number decisions.

Importantly, notice that you and the child can answer this “easiness” ques-
tion (and the “which are you more likely to make an error on” question asked
earlier) even before you figure out the correct answer. That is, even without
ever being told which color has more dots (i.e., before telling the child that
“black has more™ for both Figure 12-1a and Figure 12-1b), we seem to be able
to tell that Figure 12-1a will be the easier image to answer which has more.
Because our feeling ol internal confidence occurs prior to our decision, we
can use it in several ways. For example, it is a signal to “slow down™ and
be more careful about answering the question for Figure 12-1b. We might also
have a sense that we should “look more closely at those dots on the lower left
corner of Figure 12-1b belore we answer (o see if there are more black or gray
dots down in that visually crowded region of the display.” This means that our
sense ol internal confidence (and trial difficulty), generated by our ANS
representations, can help us decide how to approach answering a question
(e.g., where to allocate our attention, or when to be careful and take a second
glance). Thus, the ANS is not simply in the business ol giving us an answer (o
a numerical question; it is, perhaps more importantly, involved in helping us
direct our limited attention and memory resources (o help us make more
effective decisions (Odic et al., 2012).

In this way, far from amounting Lo counterproposals to the importance of
the ANS, some recent results revealing that observers are affected by stimulus
factors such as size-conflicting stimuli (Dakin et al., 2011; Gebuis &
Reynvoet, 2012; Szucs, Nobes, Devine, Gabriel, & Gebuis, 2013), spatially
intermixed stimuli (Gebuis & Reynvoet, 2012; Price et al., 2012), or briefly
flashed stimuli (Inglis & Gilmore, 2014) are all beautiful demonstrations of
the importance of internal confidence, generated by ANS representations for
guiding our numerical decisions. We hypothesize that observers rely on inter-
nal confidence from the ANS (which is sensitive to the context of stimulus
presentation) to marshal their cognitive control abilities in order to respond
more effectively to numerical stimuli, which vary wildly in their mode of
presentation across contexts (e.g., sounds heard, objects seen, all at once or
serially presented). The effects of stimulus presentation and, e.g., size/
duration-controlled or size/duration-confounded stimuli are beautiful demon-
strations of the importance ol approximate number representations and internal
confidence for numerical cognition.

Finally, internal confidence, in being fundamentally related to Weber frac-
tions, is also an important individual difference that may be related to other
cognitive abilities. An observer who has less precise ANS representations
for number will feel somewhat confident that “black has more™ for
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Figure 12-1a, and may feel very low confidence that “black has more” for
Figure 12-1b (and all observers are likely to take longer and to make more
errors for Figure 12-1b than 12-1a). We theorize that this difference in inter-
nal confidence has a major impact on how we feel about mathematics across
our entire lives and may be the dominant source for what we experience as,
“I am (am not) a math person.” Ongoing work in our lab is testing the relation
between internal confidence and school math performance. We believe that an
understanding of internal confidence can be a major unifying force for the
study of approximate number representations. All of the work being done in
this exciting field is valuable and relevant; e.g., every empirical paper reports
findings that can help to refine our theories of approximate number represen-
tation. Rather than defending older ideas about how internal representations of
approximate number might affect our mathematical thinking, we are excited
to look to the future for new constructs that can unify across our older
distinctions.

CONCLUSION

In this chapter, we have tried to promote understanding a Weber fraction (w)
as a scaling factor that enables any ANS number representation to be turned
into any other; or, equivalently, as an index of the amount of internal confi-
dence a person experiences in his or her approximate number thoughts.
Understood in this way, a Weber fraction does not require the commonsense
notion of a “threshold” (i.e., a change from failure to success), and it does not
generate the same kinds of confusions that this commonsense notion gives rise
to. Additionally, this psychophysical model integrates with a variety of signa-
tures that have been experimentally observed.

We believe that thinking about a Weber fraction as JNDs, critical ratios, of
75% performance has given rise to some confusions and that it is currently
limiting our theorizing (e.g., the confusion that performance should change
from chance performance at difficult ratios to above-chance performance at
easy ratios, while, as shown in Figure 12-3, the actual performance of subjects
does not look this way at all, but instead is a smoothly increasing function). It
also does not promote the kind of understanding of the approximate number
system (ANS) that highlights the systematic nature of variability throughout
the system. Understanding a Weber fraction (w) to be a scaling factor—i.e.,
an estimate of signal fidelity across all possible ANS representations—
promotes our understanding that variability inherent in ANS representations
is not merely a bug but is rather a feature of our approximate number system.

The heart of the ANS (and the psychological experiences of number that it
generates) is its ordinal and approximate character. Because the ANS displays
scalar variability in its coding of numerosity, understanding the variability of
any one ANS representation (e.g., through measuring CV) can be easily trans-
lated into an understanding of the internal variability, and internal confidence,
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[or every single ANS number representation. Furthermore, understanding a
Weber [raction (w) as a scaling factor also promotes our understanding of
the systematic relationships that exist across individuals (e.g., the comparison
of the two subjects in Figure 12-4).

When we understand the Weber fraction (w) to be an internal scaling
parameter that indexes the amount of precision and internal confidence in
each person’s approximate number thoughts, we can begin 1o see many new
doors for research begin to open—e.g., connections to math anxiety, stereo-
type threat, the feeling of “I'm just not a number person.” Connections (o
executive functioning and the possibilities for interventions Lo improve num-
ber sense also come into a sharper focus. All these avenues have yel (o be
fully explored, and we are excited to be able to play just a small role in testing
out some of these ideas.
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