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Many educated adults possess exact mathematical abilities in addition to an approximate, intuitive sense of
number, often referred to as the Approximate Number System (ANS). Here we investigate the link between
ANS precision and mathematics performance in adults by testing participants on an ANS-precision test and
collecting their scores on the Scholastic Aptitude Test (SAT), a standardized college-entrance exam in the USA.
In two correlational studies, we found that ANS precision correlated with SAT-Quantitative (i.e., mathematics)
scores. This relationship remained robust even when controlling for SAT-Verbal scores, suggesting a small but
specific relationship between our primitive sense for number and formal mathematical abilities.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Imagine you see a collection of marbles and are asked how many
marbles there are. As educated human adults from a numerate
culture we have access to two different ways of answering this
question: We can either count the marbles and give a precise answer
(e.g., “There are exactly 23 marbles.”) or we can estimate the number
of marbles without having to count (e.g., “There are about 20 mar-
bles.”). The ability to give a precise answer relies on the ability to
count and apply the correct linguistic labels (Gelman & Gallistel,
1978). Counting and other formal mathematical abilities such as
performing exact arithmetic operations are culturally learned and
rely on the ability to understand and manipulate symbols such as
number words and Arabic numerals (e.g., Pica, Lemer, Izard, &
Dehaene, 2004). The development of these skills often takes years
of explicit instruction and children and adults differ greatly in their
mastery of these formal mathematical abilities (e.g., Geary, 1994).

In contrast, the ability to quickly estimate numbers of objects such as
the number of marbles on the floor is a basic skill that we share with
many animals, and it is deeply rooted in our evolutionary andontogenet-
ic history (see e.g., Brannon, Jordan, & Jones, 2010; Libertus & Brannon,
2009, for reviews). While infants, animals and humans in some cultures
may have no exact number words to describe the numerical estimates
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they habituallymake, laboratory experiments aswell as spontaneous de-
cisions in everyday life (e.g., whether to fight or to flee) show that they
are capable of performing such estimations (Agrillo, Dadda, Serena, &
Bisazza, 2008; Libertus & Brannon, 2010; Pica et al., 2004; Xu & Spelke,
2000). These findings support the conclusion that these estimation skills
are not tied to language or other symbolic representations. Adults, in-
fants, and non-human animals are able to determine approximately
how many items are in a collection often in less than a second
(Cantlon & Brannon, 2006; Halberda, Sires, & Feigenson, 2006; Hyde &
Spelke, 2009; Libertus, Pruitt, Woldorff, & Brannon, 2009; Libertus,
Woldorff, & Brannon, 2007; Nieder & Dehaene, 2009). These rapid esti-
mation skills are thought to rely on the Approximate Number System
(ANS), part of our broader Number Sense (Berch, 2005), which allows
us to rapidly estimate the number of objects in real-world settings
(“Howmany cups do I have?”). This same system also supports our abil-
ity to compare these numerical estimates (“Are there more people than
cups?”) and perform basic arithmetic operations over these gut-sense
representations (e.g., subtraction: “Approximately how many more
cups do I need?”) (Barth, La Mont, Lipton, & Spelke, 2005; Gilmore,
McCarthy, & Spelke, 2007; McCrink & Spelke, 2010).

The ANS allows us to rapidly determine e.g., if there aremore blue or
yellow dots in a brief flash (Dehaene, 1992; Halberda & Feigenson,
2008; Halberda, Mazzocco, & Feigenson, 2008). For all people, these
numerical discriminations are ratio-dependent — i.e., the imprecision
of the numerical representations in the ANS increases with larger num-
bers (Dehaene & Changeux, 1993; Piazza, Izard, Pinel, Le Bihan, &
Dehaene, 2004) and discriminating numbers that are far apart is easier
than discriminating numbers that are closer together (e.g., it is easier to
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see that 16 is more than 10 than it is to see that 8 is more than 6;
Buckley & Gilman, 1974). There are large individual differences in
people's abilities to make accurate discriminations using the ANS, and
these differences in performance allow us to estimate the precision of
each individual's ANS (Halberda, Ly, Willmer, Naiman, & Germine,
2012; Halberda et al., 2008) (assessment software has beenmade freely
available at www.Panamath.org). Studies suggest that the precision of
the ANS improves greatly during the infant years (Libertus & Brannon,
2010; Lipton & Spelke, 2003; Xu & Spelke, 2000) and throughout early
childhood (Halberda & Feigenson, 2008; Odic, Libertus, Feigenson, &
Halberda, in press; Piazza et al., 2010) while individuals of the same
age can vary quite widely in their ANS precision (Halberda et al.,
2008, 2012).

It remains controversial whether the ANS affects performance in
school mathematics. School mathematics performance and the more
primitive ANS estimation performance engage both overlapping and
distinct brain regions (e.g., Dehaene, Molko, Cohen, & Wilson,
2004). It has been suggested that they may be related because esti-
mation abilities could serve as a foundation for early school mathe-
matics understanding (De Smedt, Verschaffel, & Ghesquiere, 2009;
Holloway & Ansari, 2009; Libertus, Feigenson, & Halberda, 2011).
Halberda et al. (2008) assessed students' math abilities longitudinally
from kindergarten through sixth grade and, at 14 years of age, partic-
ipants' ANS precision. ANS precision measured at 14 years of age was
found to significantly correlate with school mathematics performance
all the way back to kindergarten and at every school year in between.
Importantly, this relationship remained robust even when controlling
for other factors such as general intelligence, spatial abilities, and
working memory suggesting a fairly specific relationship between
the ANS and school mathematics abilities. In a recent study, Libertus
et al. (2011) expanded this finding by showing that the link between
ANS precision and math ability is already present in preschool-aged
children, before formal math instruction begins. Additional evidence
for a link between ANS precision and school mathematics ability
during childhood comes from evidence that decreased precision of
the ANS may be related to developmental dyscalculia — a severe
math learning disability that is not tied to general cognitive deficits
(Desoete, Ceulemans, De Weerdt, & Pieters, 2010; Mazzocco,
Feigenson, & Halberda, 2011; Piazza et al., 2010).

Debate in this area continues, and determining themechanisms that
may support a link between ANS precision and school mathematics
abilities during childhood remains an active area for theorizing. If this
link exists, it may reside in children's intuitive arithmetic operations
(Gilmore, McCarthy, & Spelke, 2010; Gilmore et al., 2007), a mapping
between the ordinal relations of the ANS and ordinal relations among
number symbols (Lyons & Beilock, 2011), or more directly in the acqui-
sition of number symbol meanings and online access to thosemeanings
(De Smedt et al., 2009; Holloway & Ansari, 2009; Rousselle & Noel,
2007; Sasanguie, De Smedt, Defever, & Reynvoet, 2011).

The question of whether the ANS remains relevant during later
school mathematics performance in adults remains more controver-
sial still. For example, DeWind and Brannon (2012) and Lyons and
Beilock (2011) found a significant correlation between ANS precision
and formal mathematics performance in adults. However, Inglis,
Attridge, Batchelor, and Gilmore (2011), Price, Palmer, Battista, and
Ansari (2012) and Castronovo and Göbel (2012) all found that ANS
precision does not correlate with performance on formal math tests
in adults. For example, Castronovo and Göbel (2012) found that
school mathematics ability was significantly related to the error in
adults' mappings between the ANS and the number words, but that
no such relationship held for simpler ANS discrimination tasks. The
importance of the mapping accuracy between the ANS and the num-
ber symbols for predicting mathematics performance has been
highlighted by their paper and several others (Booth & Siegler,
2006; Holloway & Ansari, 2009; Lyons & Beilock, 2011; Mundy &
Gilmore, 2009).
The interpretation of these previous results is made more diffi-
cult by differences in experimental methods between these studies.
Price et al. (2012) highlighted that different experimental parame-
ters return different estimates of ANS precision, and while none of
the versions of the ANS tasks they used returned a significant corre-
lation between ANS precision and school mathematics performance
in adults, all of these correlations showed poorer ANS precision re-
lating to poorer school mathematics performance. The magnitude
of the relationships found by Price and colleagues (e.g., r=−0.28)
is similar to previous significant results (e.g., Halberda et al., 2008)
and correcting for the low reliability of their ANS precision esti-
mates (r=0.44) via an attenuation correction (Schmidt & Hunter,
1996) returns a significant correlation between ANS precision and
school mathematics performance (r=−0.35). Our impression is
that the current state of the literature suggests relatively high confi-
dence that a relationship between ANS precision and school mathe-
matics performance can be seen in children and that this
relationship may be most consistently observed when tasks require
accessing the meaning of number symbols. There is lower confi-
dence that such a relationship obtains in adults and continued
work is required.

The goal of the present study was to investigate the link between
ANS precision and mathematics ability in college students. To this
end, we tested students enrolled at Johns Hopkins University on an
ANS precision test, i.e., a non-symbolic number comparison task sim-
ilar to the one employed by Halberda et al. (2008). In Experiment 1,
students were tested in a group-setting; in Experiment 2, students
were tested individually. Additionally, in both experiments we
collected official transcripts of participants' scores on the Scholastic
Aptitude Test (SAT), a standardized test of quantitative and verbal
abilities required for college admission in the United States of
America. We hypothesized that quantitative but not verbal abilities
as measured by the SAT would correlate with participants' perfor-
mance on the ANS precision test.

2. Experiment 1

2.1. Method

2.1.1. Participants
Participants were students from two undergraduate courses at

Johns Hopkins University: an introductory cognition course (N=
93) and a course on conceptual development (N=27), both within
the Psychology Department. Students in both classes were predomi-
nantly in their second or third year of undergraduate study. All partic-
ipants provided informed written consent prior to their participation
in the experiment. Student records ensured that no student was in-
cluded twice in our sample resulting in 120 unique participants. We
were primarily interested in the relationship between ANS precision
and SAT performance and did not seek to investigate differences
among these variables as a function of major, class enrollment, or
sex in this sample and this information was not collected. Preliminary
analyses revealed that there were no differences either in SAT scores
or in performance on the ANS precision test between the two class-
rooms and so the scores were combined into a single sample for all
analyses.

2.1.2. Materials

2.1.2.1. ANS precision test. To measure the precision of each student's
Approximate Number System (ANS), we administered a standard
number discrimination task modeled after Halberda et al. (2008)
(see also Pica et al., 2004; Cantlon & Brannon, 2006). The participants
were told that they would briefly see displays of blue and yellow dots
on the large projector screen in the front-center of the classroom.
Their task was to write down, on each trial, whether there were
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more blue or more yellow dots. Each stimulus array was presented for
500 ms, controlled by the computer. The participants received four
practice trials, during which the whole class was asked to shout out
their answer. Subsequently, there were 60 trials during which partic-
ipants were instructed to quietly write down their answer on a pro-
vided answer sheet. Each trial began 2 s after the previous trial and
the entire assessment lasted for approximately 5 min.

To vary the difficulty of the task, the ratio between the blue and
yellow dots was manipulated across trials. Ratios varied from an
easy 2.0 ratio (24:12 dots) to the very hard 1.05 (18:17 dots). The
full set of ratios used was: 2.0, 1.50, 1.33, 1.25, 1.16, 1.14, 1.1, 1.09,
1.07 and 1.05 with 6 trials for each ratio, and ratio varied from trial
to trial. On half of the trials, the correct answer was yellow; on the
other half, the correct answer was blue. The two sets of dots were
separated on either side of the screen (Fig. 1). Materials and instruc-
tions for duplicating this experiment are available for download and
free use at www.panamath.org under Educators & Giving the Test.

To control for perceptual aspects of the stimuli that could co-vary
with the number of dots, on half of the trials the numerically larger
set was also larger in cumulative surface area (correlated trials). Thus,
if there were twice as many yellow dots, there were twice as many
yellow pixels as well, and students might have been able to base their
answer on the amount of yellow or blue pixels rather than the number
of yellow or blue dots. On the other half of the trials the numerically
larger setwas smaller in cumulative surface area (anti-correlated trials).
Thus, if there were twice as many yellow dots, there were twice as
many blue pixels (i.e., bigger blue dots). On these trials, answering
based on the amount of pixelswould give thewrong answer. Thismeth-
od ensures that only an answer based on the number of dots can consis-
tently give the right answer on every trial encouraging students to base
their answers only on number.

2.1.3. Procedure
All tasks were administered in the classroom during a regularly

scheduled lecture without prior notification to the students. On the
day of the experiment, the students were told that they could partici-
pate in a brief study and were told that their participation was entirely
voluntary. Interested students received a booklet that included a
consent form that had them explicitly agree to having their Scholastic
Aptitude Test (SAT) scores provided to the experimenters by the
school's registrar's office. The booklet also included a sheet on which
they recorded their responses to the task. After the taskwas completed,
the participants received debriefing sheets. Their consent forms were
submitted to the registrar, who provided the experimenters with the
students' official SAT scores. Only those students who agreed to having
their SAT scores provided were included in the present study (approx-
imately 73% of the students present in each classroom yielding a total of
120 students). There were no differences in ANS precision between the
studentswho agreed to having their SAT scores provided and thosewho
did not.
Fig. 1. Sample stimuli of the ANS precision test. On the left is an easy ratio of 2.0 (24 blue do
18 blue dots).
2.2. Results and discussion

Scholastic Aptitude Test (SAT) scores were separated by their
Verbal (SAT-V) and Quantitative (SAT-Q) components; each section
was out of 800 points. All students had taken the SAT during the
years 2007–2009. The average SAT-V score was 681.58 (SE=6.48),
and the average SAT-Q score was 697.25 (SE=6.07). There was a sig-
nificant correlation between SAT-V and SAT-Q (r=0.35; pb .01). The
national averages for SAT-V and SAT-Q scores around this time were
502 and 515 respectively (College Board, 2009).

On the ANS precision test, the participants responded correctly on
75.9% of all trials (SE=0.4%). As predicted by Weber's law, the partic-
ipants' accuracy decreased as the numerical ratio approached equality
(i.e., a ratio of 1 occurs when the number of blue and yellow dots are
equal; see Fig. 2). To find each individual participant's Weber fraction
(w), an estimate of their ANS precision, we fit each participant's re-
sponses over all 60 trials with a commonly-used psychophysical
model (1) (cf., Green & Swets, 1966; Halberda & Feigenson, 2008;
Halberda et al., 2008; Pica et al., 2004).
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The model assumes that the underlying representations are dis-
tributed along a continuum of Gaussian random variables. An impor-
tant implication of this model is that the two different numbers on
each trial will often have similar and overlapping representations. In
other words, as the ratio of two quantities becomes increasingly sim-
ilar (i.e., closer to a ratio of 1.0), their Gaussian representations should
tend to overlap more and participants should have greater difficulty
in determining which color has more dots resulting in decreased ac-
curacy as the ratio becomes more difficult.

This model has only a single free parameter – w – which indexes
the amount of imprecision in the underlying Gaussian representa-
tions (i.e., the standard deviation of the Gaussian number representa-
tions such that SDn=n∗w). Larger w values indicate larger standard
deviations and thereby poorer discrimination of the system across
all ratios and numerosities. The best fitting w value was determined
for each subject using the least-squares method, and the model suc-
cessfully fit each participant's data (for further details on fitting pro-
cedures see Halberda et al., 2008).

The average w was 0.17 (SE=0.004), indicating that, on average,
the most difficult ratio the participants could reliably discriminate
was 7:6 (e.g., 7 versus 6 dots, or 14 versus 12 dots). There were, how-
ever, large individual differences, with some participants having a
w as low as 0.06 (i.e., 18:17 dots) and some as high as 0.27 (i.e., 5:4
dots). These results are consistent with previous reports in the
ts and 12 yellow dots), and on the right is the difficult ratio of 1.05 (17 yellow dots and
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Fig. 2. Percentage of correct responses on the ANS precision test in Experiment 1 as a
function of ratio between the number of dots in each set. Bars indicate standard
error of the mean.
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Fig. 3. Relationship between ANS precision and quantitative (Experiment 1: A, Experim
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literature (Halberda & Feigenson, 2008; Piazza et al., 2010; Pica et al.,
2004).

A linear regression of w with SAT-Q scores revealed that w signifi-
cantly correlated with SAT-Q (r=−0.22; pb .02; Fig. 3A); a separate
regression revealed that w did not significantly correlate with SAT-V
(r=−0.11; p=.22; Fig. 3B). The correlation between w and SAT-Q
remained significant even when SAT-V was controlled for (r=−0.19;
pb .05). We found that having more precise representations in the Ap-
proximateNumber System, i.e., a smallerw, was associatedwith scoring
better on the quantitative section of the SAT, even when controlling for
verbal SAT performance.

One issue with correlational measures is that they are limited by
the measurement error inherent in each task. To correct for the mea-
surement error in each, many researchers correct correlations via the
attenuation correction (Schmidt & Hunter, 1996; Wilmer, 2008),
which computes the proportion between the given r coefficient and
the geometric mean of the reliabilities of the two variables. SAT-Q
and SAT-V reliabilities were estimated at 0.91 and 0.90, respectively
(Ewing, Huff, Andrews, & King, 2005). The ANS task reliability was es-
timated at 0.94 via a Spearman–Brown-corrected split-half correla-
tion (Wilmer, 2008). The corrected correlation between SAT-Q and
B) SAT-Verbal vs ANS precision
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w was −0.24 (pb .01), and the corrected correlation between SAT-V
and w was −0.12 (p=.18).

We found a significant correlation between college-aged students'
performance on the SAT-Q and the precision of their Approximate
Number System (ANS) as assessed in a group-setting in the class-
room. One concern, however, may be that testing students in the
classroom may have biased our results (e.g., perhaps only the good
students attended class, or sat in the front of the room where they
could properly see the task). In previous research examining the
ANS, participants were typically tested individually in a laboratory
setting (e.g., Piazza et al., 2004). Thus, to replicate our result in a
different test setting, we tested a new group of students' in the labo-
ratory. As in Experiment 1, we also obtained official transcripts of par-
ticipants' scores on the Scholastic Aptitude Test (SAT).

3. Experiment 2

3.1. Method

3.1.1. Participants
Participants were 61 undergraduate students who participated for

course credit. All participants provided informed written consent
prior to their participation in the experiment. None of the participants
had previously participated in Experiment 1. Each participant com-
pleted two sessions of the ANS precision test (average delay=
76.39 days, SD=5.23). This separation was included to ascertain
the reliability of the ANS precision estimates and to assess the longi-
tudinal stability of w scores during adulthood.

3.1.2. Materials and procedures

3.1.2.1. ANS precision test. Each participant was individually tested in a
dimly lit room. The experiment was presented on a Macintosh Pro
with a 22″ LCD screen and the participants were seated about
42 cm away from the monitor.

Similar to Experiment 1, the participants were told that they would
briefly see displays of blue and yellow dots on the computer screen (see
Fig. 1). Each stimulus array was presented for 600 ms, controlled by the
computer, and the participants had to indicate, by pressing either F or
J buttons, whether more of the dots were blue or yellow. In each of
the two visits, the participants received two practice trials, and then
did 264 trials; the entire assessment lasted for approximately 10 min.

The full set of ratios used was: 2.47, 1.43, 1.28, and 1.18, with 66
trials for each ratio. On half of the trials, the correct answer was yel-
low; on the other half of the trials, the correct answer was blue. The
two sets of dots were separated on either side of the screen (Fig. 1).
Same as in Experiment 1, on half of the trials the numerically larger
set was also larger in cumulative surface area (correlated trials), and
on the other half the numerically larger set was smaller in cumulative
surface area (anti-correlated trials).

3.2. Results and discussion

Scholastic Aptitude Test (SAT) scores were separated by their Ver-
bal (SAT-V) and Quantitative (SAT-Q) components; each section was
out of 800 points. All students had taken the SAT during the years
2007–2009. The average SAT-V score was 678.20 (SE=9.68), and
the average SAT-Q score was 720.16 (SE=7.78). There was a signifi-
cant correlation between SAT-V and SAT-Q (r=0.31; pb .02).

To calculate w, we used the same method as in Experiment 1. The
average w at Time 1 was 0.20 (SE=0.008) and at Time 2 was 0.19
(SE=0.008). There were no significant differences between w at
the two time points (t(60)=0.95, p=.35) suggesting that there
were no practice effects over time. A more detailed analysis of the re-
liabilities within and between each time point is discussed related to
relationships with SAT scores below.
To have maximal power for estimating ANS abilities, we collapsed
performance from the two sessions into one dataset and then
modeled to find the best-fitting w for each subject. The average com-
binedw in this sample was 0.19 (SE=0.005), indicating that – similar
to Experiment 1 – the most difficult ratio participants could reliably
discriminate was 7:6 (e.g., 7 versus 6 dots, or 14 versus 12 dots).

A linear regression of this combined w score with SAT scores re-
vealed that w significantly correlated with SAT-Q (r=−0.31;
pb .02; Fig. 3C), and did not with SAT-V (r=−0.12; p=.33;
Fig. 3D). The correlation between w and SAT-Q remained significant
even when SAT-V was controlled for (r=−0.29; pb .05). As in Exper-
iment 1, we performed an attenuation correction on the scores. The
Spearman–Brown-corrected split-half reliability for the ANS task
was 0.74 (Time 1=0.69, Time 2=0.72). The corrected correlation
between SAT-Q and w was−0.37 (pb .01), and the corrected correla-
tion between SAT-V and w was −0.15 (p=0.23).

Linear regressions of w at each time point with SAT scores re-
vealed similar but slightly weaker results. At Time 1, w did not corre-
late with SAT-Q (r=−0.19, p=.13) or SAT-V scores (r=−0.19, p=
.14). However, when an attenuation correction was applied, there
was a marginal correlation between w and SAT-Q (r=−0.24, p=
.06) as well as w and SAT-V (r=−0.24, p=.06). At Time 2, w signifi-
cantly correlated with SAT-Q (r=−0.31, p=.01) but not with SAT-V
(r=−0.04, p=.79). The attenuation-corrected correlation between
w and SAT-Q at Time 2 was −0.39 (pb .01) and −0.04 (p=.73) for
w and SAT-V.

Interestingly, we found a surprisingly low correlation between Time
1 and Time 2 (r=0.22, p=.08), although the attenuation-correction re-
liabilities showed a stronger effect (r=0.32, p=.01). Part of the reason
for the small test–retest reliability may be that some students showed
more variability in w scores between the two sessions than others. To
test this, we calculated w-change scores for each participant by taking
the absolute change between the two time points. The average
w-change score was 0.05 (SE=0.01). This score correlated significantly
with SAT-Q (r=−0.30, pb .05) but not with SAT-V scores (r=−0.13,
p=.33). Thus, it appears that students who have low SAT-Q scores
also showed more variability between the two testing sessions. To
probe this further, we took the averagew scores and divided our sample
into a high-w (M=0.22; SE=0.006) and a low-w group (M=0.15;
SE=0.002), and examined their w-change scores. We found that the
high-w group showed significantly higher amounts of w-change (M=
0.07; SE=0.01) than the low-w group (M=0.03, SE=0.005; t(29)=
2.31; pb .03). This suggests that poorer performing students may be par-
ticularly important for observing a significant relationship between ANS
precision and schoolmathematics performance; these students in partic-
ular may have more highly variable ANS scores and may require repeat-
ed testing to gather sufficient evidence for their true ANS abilities.

Overall, we found that having a more precise ANS, i.e., a smaller w,
was associated with scoring better on the quantitative section of the
SAT, even when controlling for verbal SAT performance replicating our
results from Experiment 1. w estimates from each testing session sepa-
rately showed a similar pattern, but the effect at Time 1 did not reach
statistical significance. Moreover, changes in w between the two time
points were correlated with SAT-Q but not with SAT-V performance.
These findings suggest that the relationship between ANS and SAT-Q
performance is small, specific tomathematics, and stable and thatw esti-
mates are more labile in participants who have low SAT-Q scores and
high w scores. The variability in estimates of w across time, especially
in poorer performing subjects, highlights the importance of assessing re-
liability and perhaps sampling ANS precision from multiple time points.

4. General discussion

We found a significant correlation between performance on the
quantitative subtest of the Scholastic Aptitude Test (SAT) and precision
of the Approximate Number System (ANS) in college-aged students in
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two correlational studies. This relationship remained robust even when
controlling for performance on the verbal subtest of the SAT,which con-
trols for verbal abilities, general intelligence or effort, and additional fac-
tors as mediating this relationship. Additionally, this association was
found both when students' ANS precision was assessed in a
group-setting in the classroom as well as in individual testing sessions
in the laboratory. These findings suggest a specific link between formal-
ly taughtmathematical abilities and an intuitive sense of number that is
enduring and observable even in college entrance exams.

Previous research has shown a link between mathematical ability
and ANS precision in children starting as young as three years of age
and continuing through adolescence (Halberda et al., 2008; Libertus
et al., 2011; Mazzocco et al., 2011; Piazza et al., 2010). The present
study demonstrates this link in college students consistent with
some previous reports (DeWind & Brannon, 2012; Lyons & Beilock,
2011). Our findings, however, contradict recent results by Inglis et
al. (2011), Price et al. (2012) and Castronovo and Göbel (2012) who
found that ANS precision does not correlate with performance on for-
mal math tests in adults. There are several factors that might underlie
these seemingly disparate results. First, Inglis and colleagues had to
exclude about 25% of participants for using non-numeric cues to per-
form the ANS precision test and another 10% because they didn't per-
form above chance in the ANS precision test, whereas all of the
participants in our study performed the ANS precision test accurately
enough to yield ANS precision estimates. In spite of this higher drop
rate, the w estimates derived by Inglis and colleagues were much
higher (0.39) than the ones found in our experiments (Experiment
1: 0.17, Experiment 2: 0.19) and in other studies (Cordes, Gelman,
Gallistel, & Whalen, 2001; Halberda & Feigenson, 2008; Pica et al.,
2004; Whalen, Gallistel, & Gelman, 1999). A w estimate of 0.39 in
adults is markedly different than that predicted for the ANS in adults.
More generally, the present results suggest that it may be critical to
account for fluctuations in participants' ANS precision either via at-
tenuation correction or multiple testing sessions, particularly for the
lowest performing subjects. In Experiment 2, these subjects had the
most labile ANS scores across sessions, and previous work on math
learning disability suggests the possibility that lower achieving chil-
dren may be responsible for driving much of the observed correlation
between ANS precision and school mathematics performance
(Desoete et al., 2010; Mazzocco et al., 2011), though continued test-
ing across ages and ability levels is certainly required before firm con-
clusions can be drawn about which ages and which ability levels will
show this relationship most robustly. The current results and previ-
ous papers suggest a small but consistent and specific relationship be-
tween ANS precision and school mathematics performance in
adulthood.

4.1. Possible reasons for a link between the Approximate Number System
and school math abilities

It remains unknown exactly when and how ANS representations
integrate with formal math abilities. One hypothesis is that the ANS
is instrumental in the acquisition of symbolic numerical skills such
as counting and arithmetic (Dehaene, Dehaene-Lambertz, & Cohen,
1998; Gallistel & Gelman, 2000; Gilmore et al., 2007) (but see
Butterworth, 2010; Carey, 2000). Greater precision in the ANS may
allow children to acquire the counting sequence and other subse-
quent symbolic numerical skills more easily, possibly also leading to
a heightened robustness of their symbolic number representations.
As such, the ANS may be of particular importance at the onset of for-
mal math learning. Under such a view, our demonstration of a robust
relationship between ANS precision and performance on a college en-
trance exam late in life might be quite unexpected.

A second hypothesis is that poorer precision in students' ANS repre-
sentations may lead to difficulties in performing and evaluating arith-
metic operations and understanding the ordinal relationship between
Arabic numerals (Gilmore et al., 2007, 2010; Lyons & Beilock, 2011).
Students with good estimation abilities may be able to verify and reject
outcomes of arithmetic operations with greater ease, whereas students
with less precise estimation abilities may rely heavily on rote-learned
arithmetic strategies and may not notice errors in their execution of
such strategies. Furthermore, amore preciseANSmayhelp students un-
derstand the ordinal relationship between numbers more reliably. In
this case, an imprecise ANS may be especially detrimental for under-
standing the relationship between numerical symbols and arithmetic
performance when children first learn arithmetic strategies or when
people struggle with the correct execution of arithmetic strategies.
Under this view, it is perhaps surprising that performance on a college
entrance exam –which does not rely heavily on basic arithmetic to dif-
ferentiate young adults – would correlate well with ANS precision.

A third hypothesis is that poorer precision of the ANS representa-
tions may lead to decreased engagement in number-related activities,
whichmay lead to an increase in math anxiety and a decrease in math
ability (Maloney, Ansari, & Fugelsang, 2011; Maloney, Risko, Ansari, &
Fugelsang, 2010).

We believe the links between the ANS and formal math abilities
are most likely reciprocal. Future studies are needed to elucidate
which of the hypotheses mentioned above, in isolation or combina-
tion, are correct and what the nature of the reciprocity between the
ANS and school math abilities is. Our favored hypothesis is that the
heart of the ANS is its ordinal character and that it is this sense of
ordinality – as opposed to a sense of fuzzy cardinalities – that under-
lies the relationship between the ANS and school mathematics (Lyons
& Beilock, 2011). For example, the ANSmay be central to providing an
intuitive understanding of arithmetic transformations (e.g., that ‘+’

means ‘getting bigger’ in number), and a student's confidence in
these foundational concepts may have a lasting impact on current
and later math learning. That is, the ANS may be critical for develop-
ing a sense of confidence and understanding of transformations with-
in numerical space as opposed to being relied on to solve any
particular math problem on an exam like the SAT. At the same time,
engagement in number-related activities, and estimation activities
in cluttered real-world environments, might positively impact ANS
precision and improve student outcomes.

In summary, we found that the acuity of college students' Approxi-
mate Number System correlates with their math scores on a college-
entrance examination even when controlling for verbal abilities. The
results of the present study reveal a link between an intuitive sense of
number and formal math abilities. Together with previous work these
findings suggest that this association emerges in early childhood and
continues throughout adolescence all the way into adulthood.
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