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Abstract Quantificational determiners have meanings that are “conservative” in the
following sense: in sentences, repeating a determiner’s internal argument within its
external argument is logically insignificant. Using a verification task to probe which
sets (or properties) of entities are represented when participants evaluate sentences,
we test the predictions of three potential explanations for the cross-linguistic yet
substantive conservativity constraint. According to “lexical restriction” views, words
like every express relations that are exhibited by pairs of sets, but only some of
these relations can be expressed with determiners. An “interface filtering” view
retains the relational conception of determiner meanings, while replacing appeal to
lexical filters (on relations of the relevant type) with special rules for interpreting
the combination of a quantificational expression (Det NP) with its syntactic context
and a ban on meanings that lead to triviality. The contrasting idea of “ordered
predication” is that determiners don’t express genuine relations. Instead, the second
argument provides the scope of a monadic quantifier, while the first argument selects
the domain for that quantifier. On this view, a determiner’s two arguments each have
a different logical status, suggesting that they might have a different psychological
status as well. We find evidence that this is the case: When evaluating sentences
like every big circle is blue, participants mentally group the things specified by the
determiner’s first argument (e.g., the big circles) but not the things specified by
the second argument (e.g., the blue things) or the intersection of both (e.g., the big
blue circles). These results suggest that the phenomenon of conservativity is due to
ordered predication.
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Conservative determiners without conservative relations

1 Explaining conservativity

1.1 Describing the phenomenon

Given some circles, every one of them is blue if and only if every one of them is a
blue circle. Correspondingly, the meanings of the English sentences (1a) and (1b)
are logically equivalent.

(1) a. Every circle is blue.

b. Every circle is a blue circle.

Interestingly, replacing every with any other determiner (e.g., some, most, the, no)
will preserve the same logical equivalence between (1a) and (1b).

But it’s easy to imagine determiners that would violate this pattern, call them
“non-conservative determiners.” For example, suppose equi meant “equal in number”
so that (2a) means that there’s the same number of circles and blue things and (2b)
means that there’s the same number of circles and blue circles. These sentences
fail to be logically equivalent (imagine one blue circle, one red circle, and one blue
square; (2a) can be used to describe this situation while (2b) cannot).

(2) a. Equi circles are blue.
≈ the circles are equinumerous with the blue things

b. Equi circles are blue circles.
≈ the circles are equinumerous with the blue circles

To take another example, suppose yreve meant “includes” so that (3a) and (3b)
have the meanings given below. To a first approximation, this is the meaning only
would have if it were a determiner.1 (3a) and (3b) also fail to be equivalent (for
example, (3a) cannot be used to describe a situation where there is one blue circle
and one blue square, but (3b) can).

(3) a. Yreve circle is blue.
≈ the circles include all blue things

b. Yreve circle is a blue circle.
≈ the circles include all blue circles

1 We assume that only is a focus operator, even in only (the) circles are blue, given its relatively
free distribution; see Herburger 2001 for discussion and comparison with even. Note that unlike a
determiner, only can be added at any point in a sentence like the cat thought that the dog found it.
Moreover, only is focus-sensitive in that focus matters for the truth-conditions. For example, compare
Students only ordered coffeeF (they didn’t also order tea, soda, etc.) and Students only orderedF
coffee (they didn’t also make it, purchase it, etc.).
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These hypothetical words (and many others) are simple and would potentially be
communicatively useful, so it’s striking that English and other languages lack such
determiners. Instead, languages only have determiners that obey the “conservativity
constraint”: an instance of (4a), where PRED can be a verbal or adjectival predicate,
is logically equivalent to the corresponding instance of (4b), allowing variations in
morphology and word order. If (4a) is true, (4b) will be true, and vice versa.

(4) a. [[DET NP] PRED]
b. [[DET NP] [be NP that PRED]]

Accordingly, when verifying sentences with conservative determiners, like those
in (5), one need not look beyond the circles and how they are colored. Any other
things – e.g., salient squares or triangles – are irrelevant.2

(5) {Some / Most / Every / The / DET} circles are blue.

Only things that satisfy the first / NP / internal argument of a determiner matter
for the truth of the sentence.3 And given the independent evidence that children
can’t acquire non-conservative determiners despite being able to acquire novel
conservative determiners in the same experimental context (Hunter & Lidz 2013;
though see also Spenader & de Villiers 2019), the conservativity constraint seems to
be a symptom of how the language faculty operates. Non-conservative determiners
are conceivable but not possible lexical items for humans. Our semantic theory
should aim to explain this constraint.

1.2 Restricted versus relational quantification

The logical role of the first argument invites the following analogy: the noun circles
seems to function as the restrictor in a restricted quantifier. One way to capture this
formally is to take (6a) to be a sentence of a Tarskian language that is satisfied by
certain sequences of assignments of values to variables. We can say that a sequence
σ satisfies (6a) if and only if σ assigns x to something blue. Then (6b) is a new
sentence formed by adding the prefix ∀x. It is satisfied by σ if and only if each
x-variant of σ – i.e., each sequence that is like σ except perhaps with regard to what
σ assigns to the variable x – assigns x to something blue.

2 Many is a potential counterexample to this generalization given “reverse proportional” readings
of sentences like many Scandinavians have won the Nobel prize in literature (Westerståhl 1985).
But Romero (2015) argues that many is a gradable adjective that decomposes into a conservative
determiner and a degree operator.

3 This phenomenon has been described in various ways. Barwise & Cooper (1981) say that determiners
“live on” their internal arguments. Higginbotham & May (1981) describe determiners as “intersec-
tive.” Keenan & Stavi (1986) say that “determiners are always interpreted by conservative functions.”
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(6) a. BLUE(x)

b. ∀x[BLUE(x)]

c. ∀x : CIRCLE(x)[BLUE(x)]

We can then imagine a restricted variant (6c), that is satisfied by σ if and only if each
x-variant of σ that assigns a circle to x also satisfies the open sentence (6a). This
confines the sequences to be considered to just those in which x is assigned a circle,
in effect restricting the domain against which (6b) is evaluated to just the circles.

In general, if Q is a restricted quantifier, then (7a) is equivalent to (7b), since
repeating the restrictor as a conjunct in the scope of Q is logically inert. In this
respect, phrases formed by combining determiners with internal arguments (e.g.,
every circle) are like restricted quantifiers.

(7) a. Qx : Rx(Sx)

b. Qx : Rx(Rx & Sx)

Determiners have also been represented as expressing relations between sets, or
their characteristic functions (Barwise & Cooper 1981; Keenan & Stavi 1986). For
example, most in most circles are blue can be said to express the dyadic relation in
(8), which obtains if and only if the number of things that are elements of both sets
is greater than the number of things that are elements of the set of circles but not the
set of blue things.

(8) MOSTx[BLUE(x),CIRCLE(x)]

Thinking in relational terms invites a useful description of the conservativity
constraint: determiners only express relations for which (9) holds.

(9) Necessarily, for any sets X and Y, [R(X ,Y )≡ R(X ∩Y,Y )]4

But as Westerståhl (2019) shows, the overtly relational (8) is logically equivalent
to the non-relational (10) (read as “relativized to the set of circles, most things are
blue"). In (10), a monadic quantifier is evaluated in a universe restricted to circles.

(10) MOSTx[BLUE(x)] �CIRCLES

4 This is sometimes written as R(A,B)≡ R(A,A∩B). Here we follow the convention that an ordered
pair < X ,Y > can be identified with the set {X ,{X ,Y}}, in which Y is the internal element. For
example, Brutus saw Caesar, where Caesar is the internal argument of the verb, is usually regimented
as SAW (BRUTUS,CAESAR). Likewise, in (9), X is the external argument of the relation and Y is
the internal argument. This means that every circle is blue, where circle is the internal argument
of the determiner, corresponds to SUPERSET (BLUE,CIRCLE) instead of the more traditional
SUBSET (CIRCLE,BLUE).
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This restates our earlier observation about restricted quantification. If determiners ex-
press quantifiers over a universe restricted by their internal argument, conservativity
is a logical consequence

These distinct analyses – in terms of restricted monadic quantifiers versus gen-
uinely relational quantifiers – thus suggest different potential explanations for the
conservativity constraint. In this paper, we consider two proposals that start with the
assumption that determiners express relations and explain conservativity by filtering
out the problematic ones, either through stipulation (section 1.3) or with the help of
a certain interpretation of quantifier raising and a filter on trivial meanings (section
1.4). We contrast these proposals against an “ordered predication” view that rejects
relational determiner meanings in favor of the idea that the two arguments have a
different logical status: the first argument restricts the domain of evaluation and the
second argument supplies the scope of the monadic quantifier (section 1.5). On this
view, conservativity is a consequence of the logical role played by the first argument.

Given an independently plausible linking hypothesis about how meaning and
verification are related (section 2), these views make different predictions about
how participants will treat the first and second arguments of a determiner. These
predictions are the focus of our experiments (section 3). Our results favor ordered
predication. To preview: when participants evaluate a statement like every big circle
is blue, they encode the cardinality of the set denoted by the first argument (big
circles) but not the cardinalities of the sets denoted by the second argument (blue
things) or the intersection of both arguments (big blue circles). This suggests that
participants only mentally group the extension of the first argument, which would be
surprising given a relational conception of determiner meanings.

1.3 Lexical restriction

Assuming that quantificational determiners express relations, one straightforward
approach to explaining conservativity would be to forbid non-conservative relations.
Suppose that every expresses the superset relation, for example (see note 4). Then
one could stipulate that SUPERSET is a relation that can be lexicalized but SUBSET
– the meaning of the hypothetical non-conservative yreve in (3a) – is not.

Keenan & Stavi (1986) offer one version of this approach. They combine a store
of “basic” relations that are conservative (e.g., relational analogues of the Aristotelian
quantifiers) with some conservativity-preserving operations for characterizing other
relations like those corresponding to most and seventeen.

Whatever the specifics, though, this lexical restriction view raises questions.
Given a fundamentally relational conception of quantification, why should SUPERSET
be one of the basic relations, while the non-conservative relations in the immediate
conceptual vicinity – including PROPER-INCLUSION and SUBSET – are not?
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And if allowing for improper inclusion (a.k.a. identity) can be motivated, why isn’t
IDENT ITY one of the basic relations? Similarly, even if the operations needed
to introduce most and/or seventeen are motivated, why is EQUINUMEROSITY
(which the hypothetical equi in (2a) might be said to express) not a candidate for
being expressed by an atomic determiner? After all, the notion of one-to-one cor-
respondence, which is available to infants (Wynn 1992; Feigenson 2005), seems
fundamental to the “numeric” quantifiers.

So prima facie, this first way of accounting for the phenomenon of conservativity
amounts to a redescription of the explanandum in terms of the idea that determiners
are special cases of Generalized Quantifiers, namely, the ones that humans can
lexicalize. Still, even if this seems unsatisfying, it might be true.

1.4 Interface filtering

Romoli (2015) offers an alternative that provides a potentially more motivated way of
explaining the conservativity constraint while maintaining the idea that determiners
express set-theoretic relations. Building on suggestions from Chierchia (1995), Fox
(2002), and Sportiche (2005), Romoli appeals to the syntax that underpins quantifier
raising, along with an ancillary hypothesis about traces of displacement, as a way of
ruling out determiners like equi and yreve (see (2a) and (3a)).

The basic idea is that a sentence like (11a) has a logical form like (11b) after
quantifier raising. The second instance of every is then converted to an instance of
the, as in (11c), meaning that while the copy of circles gets interpreted, the copy of
every does not. If this second instance of the first argument circles in the verb phrase
gets conjoined with the predicate, (11a) has the meaning in (11d).

(11) a. Every circle is blue.

b. [every circle [every circle is blue]]

c. [every circle [the circle is blue]]

d. BLUE-T HINGS∩CIRCLES⊇CIRCLES

In (11d), every still expresses the same relation, but it’s relating the circles and the set
of blue circles instead of the circles and the set of blue things. This change doesn’t
affect the truth-conditions (if it did, SUPERSET would fail to be a conservative
relation as per the definition in (9)).

But how are non-conservative determiners ruled out? First, consider equi. Given
quantifier raising and trace conversion (from equi circle to the circle), a sentence
with equi would have the logical form in (12c) and the interpretation in (12d).

(12) a. Equi circle is blue.

211



Knowlton, Pietroski, Williams, Halberda, & Lidz

b. [equi circle [equi circle is blue]]

c. [equi circle [the circle is blue]]

d. BLUE-T HINGS∩CIRCLES =CIRCLES

But (12d) is truth-conditionally equivalent to (11d). Because the syntax causes there
to always be a copy of the first argument in the verb phrase, then every might in
fact express IDENT ITY , not SUPERSET . But even so, any sentence with every
would result in a conservative meaning. The problematic (2a) would never arise.
In other words: equi might exist, but if it did, any time it got used in a sentence,
it would be truth-conditionally equivalent to the same sentence with every. And
as Romoli (2015) shows, this line of thinking holds for a subset of the would-be
non-conservative determiners: given their syntax, sentences with them are truth-
conditionally equivalent to sentences with a conservative determiner.

For another class of potential non-conservative determiners, like yreve, an extra
ingredient is needed. The interpretation after quantifier raising and trace conversion
– (13d) – is not truth-conditionally equivalent to a sentence with any extant conser-
vative determiner. In fact, (13d) will always be true, as the circles will always be a
superset of or be identical to the blue circles.

(13) a. Yreve circle is blue.

b. [yreve circle [yreve circle is blue]]

c. [yreve circle [the circle is blue]]

d. BLUE-T HINGS∩CIRCLES⊆CIRCLES

So, a filter on trivial meanings (e.g., Gajewski 2002; Fox & Hackl 2006) – sentences
that are tautologies or contradictions for any substitution of lexical content – is
posited to rule out yreve. If it existed, any sentence with yreve would be declared
ungrammatical given such a filter.

1.5 Ordered predication

The non-relational ordered predication view also assumes raising for quantificational
determiner phrases, even those in subject position, so that the relevant syntax for
(14a) is (14b).

(14) a. Every circle is blue.

b. [S′ [every circle]x [S [every circle]x is blue]]

In contrast with interface filtering though, here the indexed trace (or lower copy)
of the raised DP is treated as a variable in the usual way. Then, we can think of
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the embedded clause as an open sentence akin to itx is blue. This open sentence is
satisfied by an assignment of values to variables if and only if the thing assigned
to the variable is blue. The whole sentence in (14a) is true, relative to an arbitrary
assignment A, just in case every circle, x, is such that the embedded open sentence is
true relative to the variant of A that assigns x to the indexed variable; see Pietroski
2018.

Alternatively, instead of thinking of the first argument as restricting the assign-
ments with respect to which the open sentence is evaluated, we could think of it as
restricting the domain of evaluation. Using the “hook” notation given above (section
1.2), we can read (15) as “relativized to the set of circles, everything is blue.”

(15) ∀x[BLUE(x)] �CIRCLES

Either way, the crucial point for our purposes is that the domain with respect to which
the quantified expression is evaluated is restricted by the first (nominal) argument.
The determiner describes how the further condition supplied by the second argument
(is blue) applies to the members of the restricted domain (the circles). In the case of
every, for example, it applies exhaustively.

All conservative determiners can be stated in this way, even proportional quan-
tifiers like most (though see Pietroski, Lidz, Hunter & Halberda 2009 and Lidz,
Pietroski, Halberda & Hunter 2011 on what it means for a predicate to apply to most
things in a restricted domain). But crucially, non-conservative determiners are not
stateable (Westerståhl 2019).

For example, consider equi in (2a). The intended meaning is that the circles
are equinumerous with the blue things. But this cannot be stated in terms of how
the predicate is blue applies to the circles. One way or another, the cardinality of
the blue things needs to be taken into account, and the blue things are outside of
the restricted domain. The same is true for yreve in (3a) and any other potential
determiner that requires making reference to the extension of the second argument.
So conservativity is a logical consequence of ordered predication.

2 Testing predictions of the three views

2.1 Linking hypothesis

Importantly, each of the three proposals makes a different prediction about the
semantic representation for sentences with conservative determiners. In this paper,
we use every as a case-study. Consider the meaning of (16a) according to each view:

(16) a. Every N is P.

b. P⊇ N (lexical restriction)
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c. P∩N ⊇ N (interface filtering)

d. ∀x[P(x)] � N (ordered predication)

We adopt the linking hypothesis from Lidz et al. (2011): The verification pro-
cedures employed in understanding a declarative sentence are biased towards algo-
rithms that directly compute the relations and operations expressed by the semantic
representation of that sentence.

In a semantic representation like (16b), two independent sets are explicitly related
(those denoted by the first and second arguments). Likewise, in (16c) two sets are
related (one denoted by the first argument and the other by the intersection of the
first and second arguments). If either of these is the meaning of every N is P, then,
all else equal, the most natural thing for participants to do when trying to verify that
meaning would be to represent and relate the two specified sets. The visual system
can represent up to three sets in parallel with no loss of acuity (Halberda, Sires &
Feigenson 2006). Intuitively, adults (and children) routinely do represent multiple
sets when evaluating sentences like there are more blue dots than yellow dots. So
there is no independent constraint against representing and relating both sets.

But in (16d), the first and second arguments are not treated on a par logically. It
is less clear which items participants should mentally group, if any (this may depend
on whether the restriction is better thought of in terms of restricting assignments or
restricting the universe of evaluation). But given the logical asymmetry between the
two arguments, (16d) predicts a corresponding psychological asymmetry in the way
that participants treat their extensions.

Our experiments thus probe which set(s) participants represent when evaluating
quantificational sentences. As a proxy for whether participants represented a set,
we probe their memory for the set property cardinality (see Knowlton, Pietroski,
Halberda & Lidz under review). Intuitively, cardinality is a property of groups much
like average size or center of mass. When people represent a group of individuals
as a group – sometimes called an ensemble representation – they abstract away
from individual properties and instead encode these sorts of set summary statistics
(e.g., Ariely 2001; Halberda et al. 2006; Burr & Ross 2008; Alvarez 2011). So,
if participants represented a set as such, they should have a better estimate of its
cardinality than if they did not.

2.2 Experimental design

Participants first saw a statement like every big circle is blue. Sizes (big, medium,
small) and colors (blue, red, yellow) were randomized. After pressing “spacebar”,
participants were briefly shown an image of between 24 and 48 circles on a grey
background (Fig. 1). Medium circles had grey holes in the middle, to make them
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Figure 1 Participants completed a sentence verification task (top) and a baseline
number-knowledge task using the same image types (bottom).

more distinguishable from the other two sizes (Chen 1982; Chen 2005). Participants’
task was to judge the statements as true or false, relative to the picture. They
responded by pressing “J” or “F” on their keyboard.

After giving their true/false response, participants were given a follow-up car-
dinality question (e.g., how many big circles were there?) and were asked to type
their guess before moving onto the next trial. Some questions probed the set denoted
by size (big, in this example; but sometimes small or medium), others probed the
set denoted by color (blue, in this example; but sometimes red or yellow), and
others probed the intersection of size and color (big blue, in this example; but any
combination of size and color was possible). Each participant saw 18 trials in total.

Each participant also first completed a 15-trial baseline number task (Fig. 1)
based on Halberda et al. (2006). In this task, there were no sentences to evaluate, and
the cardinality question was shown prior to the dot display. Performance on this task
represents the best possible cardinality estimates the visual system will allow given
these displays and a one second viewing limit. It also controls for any differences
in difficulty (e.g., perhaps in these particular displays it is easier to visually group
circles based on their color than on their size).

Each of the six experiments in the following section used this basic design.
Experiment 1 tested sentences with a first argument defined by size and a second
argument defined by color, as in every big circle is blue. We find that while partici-
pants know the cardinality of the set denoted by every’s first argument (big circles)
as well as they know the cardinality of sets defined by size at baseline, they are
significantly worse than baseline performance when asked to recall the cardinality
of the set denoted by every’s second argument (blue circles) or the cardinality of the
set denoted by the intersection of both arguments (big blue circles). This suggests
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that participants only mentally group the extension of every’s first argument. The
five subsequent experiments control for various alternative explanations.

3 Results

3.1 Experiment 1: every big circle is blue

71 participants were recruited on Amazon Mechanical Turk. Participants were
excluded from further analysis if they failed an English proficiency screener (18),
performed at chance or below on the true/false portion (2), or took longer than 5 sec-
onds, on average, to respond to cardinality questions (3). This left 48 participants.5

Responses to cardinality questions in both the baseline and sentence-verification
tasks were fit with the standard psychophysical model of number estimation (Stevens
1964; Krueger 1984; Odic, Im, Eisinger, Ly & Halberda 2016). This model allows
participants’ accuracy on number questions (i.e., the average proximity to the true
cardinality) to be described by a single parameter (β in the equation y = αxβ , where
y is the numerical response, x is the true cardinality, and α is a scaling factor). This
measure of accuracy on the cardinality questions following sentence-verification
was then subtracted from the same measure of accuracy obtained from the baseline
trials, creating a single accuracy difference score for each set tested. Error around
this difference score was computed by taking the square root of the sum of squared
errors around both accuracies.

Using these two values, we conducted Wald tests to compare the difference score
for each subset probed (size, color, and intersection) against the null hypothesis of a
difference score of 0. A significant result thus indicates that participants were worse
than their visual system would allow when asked to give cardinality estimates of
that subset after sentence evaluation. If the set is represented following evaluation,
then performance should not be statistically worse than baseline. But if the set in
question is not represented, performance should be significantly worse.

As mentioned in section 2, each of the three explanations of conservativity
makes a different prediction about which set(s) participants should represent during
evaluation. Lexical restriction predicts mental grouping of both the first and second
arguments (though perhaps not their intersection). Interface filtering predicts mental
grouping of both the first argument and the intersection of the first and second
arguments (though perhaps not the second argument by itself). Ordered predication
predicts that participants will treat the two arguments asymmetrically.

We find that participants know the cardinality of the set denoted by the first
argument (big circles): their difference score is not significantly lower than 0 (χ2 =
0.007, p = .93; Fig. 2). In other words, after evaluating a sentence like every big

5 For all subsequent experiments, we aimed for a final sample of 48, given these exclusion criteria.
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Figure 2 Participants’ baseline accuracy minus their accuracy on number-
questions after verifying statements like every big circle is blue. Here
and for subsequent experiments, difference scores when asked about the
set denoted by the first argument of the determiner are shaded in blue;
difference scores when asked about other sets are shaded in orange.

circle is blue, they seem to know the cardinality of the big circles as well as their
visual system will allow; just as well as when they were instructed ahead of time to
pay attention to the big circles and estimate their cardinality.

However, participants were significantly worse than their baseline performance
when asked about the set denoted by the second argument (blue circles) (χ2 =
13.13, p < .001; Fig. 2) and when asked about the set denoted by the intersection of
both arguments (big blue circles) (χ2 = 27.09, p < .001; Fig. 2). This latter result
is especially surprising as on half of the trials the statement was true (e.g., every
big circle was blue), and in those cases the cardinality of the first argument and the
cardinality of the intersection was identical.

This result shows that participants only mentally group the extension of every’s
first argument. We take this to be very surprising on either of the two relational
views (lexical restriction and interface filtering), given that (i) these views hold that
the semantic representation of every big circle is blue is a relation between two sets
and (ii) there is no apparent non-linguistic pressure that would prevent participants
from adopting a verification strategy that relies on representing and relating two sets.
On the other hand, this result fits nicely with the non-relational ordered predication
view: the semantic representation treats both arguments differently, so participants
treat their extensions differently as well.

That said, there are a number of alternative factors that might have encouraged
participants to represent the first arguments as a set. Some of these will be addressed
in the experiments that follow while others will be left for future work.
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Figure 3 Participants’ baseline accuracy minus their accuracy on number-
questions after verifying statements like every blue circle is big.

First, perhaps there is something special about the fact that every’s first argument
was based on size instead of color (experiment 2). Second, perhaps participants
always represent the extension of NPs that they encounter as sets, regardless of
the sentence meaning (experiments 3-4). Third, perhaps participants would have
represented the second argument as a set but could not because they had reached
their working memory capacity limit by the time they made it to the verb phrase
(experiment 5). Lastly, we show that symptoms of the asymmetry can be replicated
without even needing to examine participants’ responses to the various cardinality
questions (experiment 6).

3.2 Experiment 2: every blue circle is big

Regarding the first possibility: might there be something special about the quantifier’s
first argument being specified by a size? Perhaps, for example, participants always
represent sets defined by size given displays of this type. If so, then we should
expect the set denoted by the mentioned size to be represented even when it does
not appear as every’s first argument. For that reason, experiment 2 was identical
to experiment 1 except that the arguments were inverted, yielding sentences like
every blue circle is big. On the other hand, if participants represent every’s first
argument as a set regardless, then even given these “swapped argument” sentences,
participants should represent the set described by color but not the set described by
size (or by the intersection of both).

This latter prediction was borne out. Participants’ estimates of the first argu-
ment’s cardinality (blue circles) following sentence-verification were not signifi-
cantly different from their estimates during baseline (χ2 = 2.53, p = .11; Fig. 3).

218



Conservative determiners without conservative relations

Figure 4 [Left] Participants’ baseline accuracy minus their accuracy on number-
questions after verifying statements like only big circles are big and
[Right] after verifying statements like only blue circles are big.

But they did perform significantly worse than baseline when asked about the set
denoted by the second argument (big circles) (χ2 = 16.16, p < .001; Fig. 3) or the
intersection (big blue circles) (χ2 = 23.69, p < .001; Fig. 3). This confirms that
there is something important about being the first argument of the quantifier with
respect to triggering set representation.

3.3 Experiments 3 and 4: only big circles are blue / only blue circles are big

Another possibility is that participants performed well when asked about the car-
dinality of the first argument in experiments 1 and 2 because being an NP always
triggers set representation. It is worth noting, however, that given one of the rela-
tional views, this would mean that something other than the meaning is responsible
for triggering set representation (since, on these views, both the NP and VP are
treated as sets).

To rule out this possibility empirically, experiments 3 and 4 replace every with
only. Other than that, these experiments are identical to experiments 1 and 2.
Because only is not a determiner (see note 1), it does not take arguments in the
same way as every. If being the first argument of a determiner is important for
triggering this sort of set representation during verification, then we predict no sets
to be represented given these only-variants.

Consistent with this prediction, we find that changing every to only causes par-
ticipants to perform significantly worse than baseline when asked about any subset.
Indeed, they performed significantly worse than baseline in all three conditions after
evaluating sentences like only big circle are blue (size: χ2 = 10.67, p < .01; color:
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χ2 = 62.08, p < .001; intersection: χ2 = 14.99, p < .001; Fig. 4, left) and after
evaluating sentences like only blue circles are big (color: χ2 = 30.15, p < .001;
size: χ2 = 5.14, p < .05; intersection: χ2 = 8.34, p < .01; Fig. 4, right).

This suggests that every was particularly relevant in triggering set representation
of its first argument in experiments 1 and 2. Merely being an NP is not enough to
encourage participants to mentally group the extension.

3.4 Experiment 5: the blue team painted every big circle

A remaining alternative explanation is that participants would have mentally repre-
sented both arguments (or the first argument and the intersection) as sets, but ran
up against their working memory capacity. As noted above, humans can represent
three sets in parallel before incurring costs Halberda et al. (2006). One of these is
always the superset of all dots, leaving two remaining “slots”. When attempting to
evaluate every big circle is blue, participants might first represent the big circles and
then may fill the second “slot” with another set (e.g., perhaps the complement of this
set). If so, they would have no “room” to represent the extension of is blue, which,
by hypothesis, is the set of blue circles.

To control for this possibility, experiment 5 put the second argument into subject
position. Participants were told that they had to judge a contest between the blue,
red, and yellow teams, each of which were painting circles their color. Then they
were asked to judge statements like the blue team painted every big circle as true
or false. Plausibly, given the experimental context, the extension of the blue team
is the blue circles. So if being earlier in the sentence is to blame fo the fact that
participants mentally group the extension of the first argument in experiments 1 and
2, then participants should mentally group the blue circles in this task.

This prediction is not borne out. Participants’ cardinality estimates were signifi-
cantly worse than baseline when asked about a set denoted by color (χ2 = 46.48, p <
.001; Fig. 5) despite color being named first in the sentence.

Participants also performed significantly worse than baseline when asked about
a set denoted by a size (χ2 = 6.11, p < .05) and when asked about a set denoted by
the intersection of both (χ2 = 15.87, p < .001). Given the results of experiments
1 and 2, it is somewhat surprising that participants in experiment 5 are worse than
baseline for size questions. This suggests that being in subject position (or being a
sentence topic) might play a role in triggering set representation. Alternatively, this
might reflect the overall difficulty of asking the question in this way as opposed to
the more straightforward every big circle is blue. Future work will aim to distinguish
these possibilities experimentally.
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Figure 5 Participants’ baseline accuracy minus their accuracy on number-
questions after verifying statements like the blue team painted ever
big circle.

3.5 Experiment 6: every big circle is blue (with an “I don’t know!” button)

Experiment 6 is identical to experiment 1 except for the addition of a large red
“I don’t know!” button underneath every cardinality question. The button gave
participants a penalty-free option to opt out of any trial they thought they could not
accurately answer. They were, however, instructed to use it only as a last resort.

This manipulation provides a replication of the initial experiment using a simple
behavioral measure that does not require fitting and interpreting psychophysical
models. Given the results of experiments 1 and 2, we predict higher than baseline
rates of opting out for questions probing the second argument and the intersection
of both arguments. In addition, it offers some insight into whether participants are
conscious of their epistemic limitations: do they realize that they often don’t have a
good estimate of the second argument’s or the intersection’s cardinality?

The overall rate of “I don’t know!” button presses during each portion of the
task is plotted in Fig. 6 (left). We find that participants are no more likely than
baseline to opt out of cardinality questions probing the first argument (big circles)
(t47 = 0.47, p = .64). But they are significantly more likely to opt out of questions
probing the scope argument (blue circles) (t47 = 2.91, p < .01) and for those probing
the intersection (big blue circles) (t47 = 3.07, p < .01).

As in experiments 1 and 2, this suggests that participants only represent the
first argument of the determiner as a set. When asked about the first argument’s
cardinality, they are as confident about their responses as their visual system allows.
But when asked similar questions about the second argument’s or the intersection’s
cardinality, they are less confident than expected.
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Figure 6 [Left] Participants’ average rate of pressing the “I don’t know!” button
instead of answering the cardinality question during the baseline task
(orange) and following sentence-verification (green). [Right] Partici-
pants’ baseline accuracy minus their accuracy on number-questions for
the trials that they did not opt out of.

Moreover, when considering only the trials on which participants did not opt
out (i.e., trials on which they gave a numeric answer instead of pressing the “I don’t
know!” button), we find the same effect as in experiments 1 and 2 (Fig. 6, right).
Namely, participants were significantly worse than baseline on questions probing
the second argument (χ2 = 19.83, p < .001) and the intersection of both arguments
(χ2 = 4.19, p < .05), but their performance was not significantly different from
baseline on questions probing the cardinality of the first argument (χ2 = 0.94, p =
.33). This suggests that while participants are somewhat aware of their epistemic
limitations, they do not have conscious access to its full extent.

4 Conclusions and future directions

4.1 What triggers set representation?

In our view, these results support a non-relational view of determiner meanings.
The reason that a sentence like every big circle is blue encourages representation of
the big circles as a set – and not the blue ones or the big blue ones – is because its
meaning is more in line with (16d) than (16b) or (16c).

To be sure, meaning is not the only factor that carries weight in determining
how participants will approach a given scene in a sentence-verification task. Details
of the visual display, for example, can bias participants to represent one group of
circles as a set but not another. But because the current results are compared against
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a baseline and because the predictions hold when the arguments are flipped, visual
properties of the display are not likely to be at issue here.

Still, there may be other details of the sentences used that are responsible for
triggering set representation. As noted, sentence topicality may be of particular
interest, as being the topic may play a role in encouraging participants to mentally
group individuals.

Another possibility is that participants are, like Barwise & Cooper (1981) sug-
gested, only choosing to represent the first argument of every as a set during ver-
ification because sentences with every have conservative meanings and can thus
be verified without looking beyond the extension of the first argument, as noted
in section 1. It’s a logical possibility that participants understand every to express
a relation between two sets, but nonetheless only mentally group the extension of
the first argument when evaluating sentences with every. As mentioned though,
given that participants’ visual systems represent three sets in parallel at no cost to
performance (Halberda et al. 2006), there is no obvious sense in which representing
only one is an easier or otherwise superior strategy.

4.2 What about other determiners?

Crucially, the non-relational ordered predication explanation of conservativity does
not predict that all determiners will lead to identical performance when it comes to
triggering set representation. Some determiners may be represented in a completely
first-order way that eschews sets or any other notion of grouping the satisfiers of a
predicate together. In other work using a similar paradigm, we argue that each is
one such determiner (Knowlton et al. under review). Other determiners, like most,
may lead to representation of more than one set (e.g., Lidz et al. 2011).

What is predicted by ordered predication is that a determiner’s second argument
(like is blue) will not trigger group representation. Instead, the second argument
is treated as an open sentence that applies to the members of a restricted domain
in the way specified by the determiner (e.g., exhaustively in the case of every;
proportionally in the case of most; with a cardinality restriction in the case of two).
While the domain may be initially be restricted in a way that requires treating the
first argument as a group (as we have shown for every) or in a way that implicates
only individuals (as we suspect for each), the application of the second predicate
should never trigger group representation.

In future work, we hope to use similar methods to investigate other determiners
and further test this prediction. If our findings generalize beyond every, ordered
predication offers a ready explanation of our participants’ behavior and a simple
account of the conservativity constraint: no determiner expresses a non-conservative
relation because no determiner expresses a relation in the first place.
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