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Abstract
Quantificational determiners are often said to be devices for expressing relations. For
example, the meaning of every is standardly described as the inclusion relation, with
a sentence like every frog is green meaning roughly that the green things include the
frogs. Here, we consider an older, non-relational alternative: determiners are tools for
creating restricted quantifiers. On this view, determiners specify how many elements
of a restricted domain (e.g., the frogs) satisfy a given condition (e.g., being green).
One important difference concerns how the determiner treats its two grammatical
arguments. On the relational view, the arguments are on a logical par as indepen-
dent terms that specify the two relata. But on the restricted view, the arguments play
distinct logical roles: specifying the limited domain versus supplying an additional
condition on domain entities. We present psycholinguistic evidence suggesting that
the restricted view better describes what speakers know when they know the meaning
of a determiner. In particular, we find that when asked to evaluate sentences of the
form every F is G, participants mentally group the Fs but not the Gs. Moreover, par-
ticipants forego representing the group defined by the intersection of F and G. This
tells against the idea that speakers understand every F is G as implying that the Fs
bear relation (e.g., inclusion) to a second group.
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1 Introduction

Quantificational determiners like every, some, and most are standardly described as
devices for expressing second-order relations. In this sense, the meanings of natural
language determiners are often said to be special cases of Generalized Quantifiers
(Mostowski 1957; Barwise and Cooper 1981; see Westerståhl 2019 for a helpful re-
view). For example, the meanings of (1a) and (2a) might be specified with (1b) and
(2b), which are notational variants of (1c) and (2c).

(1) a. Every frog is green.
b. {x: Frog(x)} ⊆ {x: Green(x)}
c. Includes({x: Green(x)}, {x: Frog(x)})

(2) a. Some frog is green.
b. {x: Frog(x)} ∩ {x: Green(x)} �= 0
c. Intersects({x: Green(x)}, {x: Frog(x)})

On this view, the determiner combines with two grammatical arguments (e.g.,
frog and is green)—arguments that are themselves first-order predicates—to form a
sentence according to which the extensions of the two arguments are related in the
way specified by the determiner. In short, the determiner expresses a relation between
two sets. As an analogy, suppose that the transitive verb admires in (3a) expresses a
first-order relation, as suggested by (3b), where admires relates the extensions of
Kermit and Grover.

(3) a. Kermit admires Grover.
b. Admires(Kermit, Grover)

Given this relational understanding of transitive verbs, quantificational determin-
ers can seem like second-order transitive expressions that differ from verbs in that
they relate sets of individuals instead of individuals.

Thinking about determiners in this way—as devices for expressing dyadic re-
lations exhibited by sets of domain entities—has provided a useful framework for
studying properties of natural language quantification and stating various generaliza-
tions; see, e.g., Barwise and Cooper (1981), Higginbotham and May (1981), Keenan
and Stavi (1986), and Keenan (2002). One potential limitation of this approach is
that prima facie, determiners that express the same relation can still differ in ways
that matter for understanding (e.g., each versus every versus all; most versus more
than half ; at most three versus fewer than four). To deal with such differences, as
opposed to simply denying that they are semantic, one might retain relational spec-
ifications of determiner meanings but supplement them with syntactic diacritics that
trigger movement in ways that affect interpretation (e.g., Beghelli 1997; Beghelli and
Stowell 1997; Szabolcsi 1997). Alternatively, one might propose that semantically
distinct determiners can be truth-theoretically equivalent (across possible worlds) be-
cause their meanings reflect psychologically distinct ways of specifying or thinking
about a common extension (e.g., Geurts and Nouwen 2007; Hackl 2009; Pietroski
et al. 2009; Lidz et al. 2011; Knowlton et al. 2021a, 2022a).

A second potential limitation of the relational view is that natural language ex-
ploits only a small corner of the space of potential Generalized Quantifiers. This was
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known from the outset; Barwise and Cooper (1981) note, for example, that quan-
tificational determiners respect logically contingent constraints (e.g., conservativity,
discussed below). One might describe this situation by marking the occupied regions
of the broad space permitted by the general and highly expressive system. Alter-
natively, one might begin with a more restrictive system, in which the unattested
meanings cannot be expressed (e.g., Pietroski 2005, 2018; Ben-Yami 2009; though
see also Ben-Yami 2012; Westerståhl 2012). The choice is similar to one in syntac-
tic theory: either formulate grammars for natural languages using a powerful system,
such as the class of Type 0 or Type 1 Grammars (in the sense of Chomsky 1956,
1959), thus allowing for grammars of unattested kinds; or begin with a more restric-
tive system—perhaps one that allows for “mildly context-sensitive grammars” (Joshi
1985; Joshi et al. 1990; Steedman 2000; Stabler 2001, 2013)—whose range more
closely aligns with what is naturally observed. Similar choices arise in the study of
phonology (Heinz and Idsardi 2011, 2013). Here, we press a similar point for seman-
tics, and take the view that a more restrictive system provides a better explanation
of how natural language determiners are understood (i.e., mentally represented) by
language users (relatedly, see Icard and Moss 2022).

The view that determiners express relations has been dominant. Inspired by Frege
(1879, 1884, 1892) and Russell (1905), it was brought to linguistics via Lewis (1970),
Montague (1973), and others. But prior to Frege, it had seemed obvious that the
classical quantifiers are devices for ascribing properties to some quantity of things in a
restricted domain. As Hodges (2012, p. 247) puts it in his translation of an early sixth
century commentary on Aristotle: “Determiners . . . combine with the subject terms
and indicate how the predicate relates to the number of individuals under the subject;
. . . Every man is an animal signifies that animal holds of all individuals falling under
man.” Higginbotham and May (1981, p. 54) put the same point as follows: the noun
(phrase) with which a determiner combines can be thought of as “restrict[ing] the
domain over which the variable bound by [the quantifier] ranges.” And as Lepore and
Ludwig (2007, p. 61) similarly say: the internal argument of all in the sentence all
men are mortal “functions as if it were a variable restricted to taking on as values only
men.” A similar idea is pursued in Lasersohn (2021), which advocates interpreting
nouns not as predicates, but as themselves restricted variables.

According to this non-relational “restricted quantification” view, every frog signals
two important features about the proposition expressed with the sentence in (1a): the
generalization is universal (as opposed to proportional or existential), and the gener-
alization is about the frogs (thus excluding as irrelevant any other green things). In
which case, every is not a device for relating two independently specified sets that
correspond to the determiner’s two syntactic arguments (frog and is green). Rather,
every is device for applying a predicate (supplied by its external argument) to a re-
stricted domain (defined by its internal argument).

Following Westerståhl (2019), the difference between relational and restricted
quantification can be formalized as in (4), where ‘X �’ is understood as “relativized
to X”.

(4) a. EVERYx[FROGx, GREENx]
b. FROG � EVERYx[GREENx]
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In the overtly relational (4a), the two syntactic arguments of the quantifier (frog
and is green) are logically on a par. Both the internal and external argument supply
terms in a relation (‘FROG’ and ‘GREEN’), and the determiner specifies which re-
lation (‘EVERY’). On the restricted (4b), the arguments serve different logical roles.
The internal argument restricts the domain of quantification, and the external argu-
ment supplies a further condition that some quantity of this restricted domain needs
to meet. The determiner specifies the quantity.

The relational (4a) might be elaborated as in (1b-c) above, or in various other ways
(e.g., by relating the cardinality of the frogs to the cardinality of the green things that
are frogs; see Sect. 2). But however one cashes out ‘EVERY’ in (4a), the idea is that
it relates the two pluralities supplied by its two arguments. On the other hand, the
asymmetry inherent in the restricted (4b) can be further highlighted by cashing out
‘EVERY’ as in (5a), where the iota expression ‘ιX:Frogs(X)’ introduces the plural
group “the frogs” and the quantifier specifies how many members of that group the
predicate applies to in a first-order way.

(5) a. ιX:Frogs(X) � ∀x[Green(x)]
b. ≈ Relative to the frogs, every thingx is such that itx is green

Unlike the relational (1b), repeated below, the restricted (5a) has no part that rep-
resents the green things—at least not as such—though both (1b) and (5a) have parts
that represent the frogs (‘{x: Frog(x)}’ and ‘ιX:Frogs(X)’).1

(1) b. {x: Frog(x)} ⊆ {x: Green(x)}

The particular unpacking of ‘EVERY’ in (5a) amounts to the additional claim
that the restriction is the only part of the meaning that introduces a plurality. But
although it highlights the asymmetry between the logical role of the determiner’s
two syntactic arguments, this additional claim is not entailed by the restricted view
(see discussion of most in Sect. 4). In what follows, we concern ourselves primarily
with the claim that quantifiers like every have restricted meanings, though the data
presented below could also be used to argue for the more specific claim that every’s
meaning introduces only a single group, along the lines of (5).

There are theoretical reasons for preferring the restricted view. Notably, it offers a
simple account of the generalization that all determiners are “conservative” (e.g.,
Pietroski 2018; Westerståhl 2019; Knowlton et al. 2021b; Ludlow and Zivanović
2022). Essentially, the conservativity generalization is that all determiners have the
following property: duplicating their internal argument in their external argument
results in two sentences that are mutually-entailing (Barwise and Cooper 1981; Hig-
ginbotham and May 1981; Keenan and Stavi 1986; for recent debates surrounding the
right characterization of the constraint, see e.g., Zuber and Keenan 2019; Pasternak

1The expression ‘ιX:Frogs(X)’ in (5a), glossed as the frogs, is shorthand for ‘ιX[∀x[X(x) ≡ Frog(x)]]’:
the thingsX such that for each thingx, itx is one of themX iff itx is a frog. In using the iota operator here,
we do not commit ourselves to the view that sentences like every frog is green presuppose the existence of
some contextually relevant frogs. The expression ‘ιX[∀x[X(x) ≡ Frog(x)]]’ indicates the frogs; for present
purposes, we remain agnostic about the nature of this plurality and any presuppositional commitments. In
contrast, expressions like ‘Frog(x)’ and ‘Green(x)’ do not, on their own, imply the existence of a particular
group (the frogs or the green things).
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and Sauerland 2022). For instance, every/some/no fish swim is true if and only if ev-
ery/some/no fish are fish that swim is true. Learnability results suggest that this is not
a historical accident, but a universal that reflects a deep fact about the language fac-
ulty (Hunter and Lidz 2013; Steinert-Threlkeld and Szymanik 2019; Knowlton et al.
2022b; cf . Spenader and de Villiers 2019; Ramotowska 2022).

In this context, the crucial point in favor of the restricted view is that typologically
unattested determiner meanings that are easily specified in terms of non-conservative
relations cannot be specified as restricted quantifiers. For example, one can imagine
a language with a determiner equi such that equi frogs are green means “the frogs
and the green things are equinumerous”. This unattested determiner meaning is eas-
ily stated in relational terms: |{x: Frog(x)}| = |{x: Green(x)}|. Some way of filtering
out troublesome relations like ‘A = B’ is then needed if the relational view is to be
retained (Keenan and Stavi 1986; Romoli 2015). But no filter is needed If quantifi-
cational determiners are understood as expressions that combine with their syntactic
complement to create a restricted quantifier, as Westerståhl (2019) shows. Intuitively,
the imagined meaning of equi cannot be specified by saying how the predicate green
applies to the frogs. Conservativity is thus a spandrel of the restricted view. And since
conservativity is perhaps the most robust and renowned semantic universal (see von
Fintel and Matthewson 2008 for review), explaining it as a consequence of semantic
theory is an important benefit.

Setting aside conservativity and other theoretical considerations, our aim here is to
offer some initial psychological evidence for preferring the restricted view. In partic-
ular, the restricted view posits a difference in the logical role of the two syntactic ar-
guments of the determiner, the internal (nominal) argument and the external (clausal)
argument. The relational view does not. Taking this as a psychological hypothesis—a
hypothesis about the representations that language users instantiate in understanding
a sentence with a quantificational determiner—we expect some psychological reflec-
tion of this logical asymmetry on the restricted view, but not on the relational view.
The studies reported below find exactly such an asymmetry. In short, when speakers
of English are presented with a sentence of the form ‘Every A B’ in a situation where
all the relevant correspondents of ‘A’ and ‘B’ are easily seen, these speakers mentally
represent the correspondents of ‘A’ as a group without likewise representing the cor-
respondents of ‘B’ as a group. Even more strikingly, speakers avoid representing the
correspondents of the conjunction ‘A & B’ as a group. This tells against the idea that
a sentence of the form ‘Every A B’ means that the relevant correspondents of ‘A’,
taken together, are suitably related to the relevant correspondents of ‘B’, taken to-
gether. Likewise, it tells against an amended version of the relational view where the
correspondents of ‘A’ are related to a group defined by intersecting both arguments,
‘A ∩ B’.

2 Psycholinguistic predictions of formally distinct meanings

As discussed in Sect. 1, on standard views, the sentence in (6a) has a relational logical
form like (6b), which can be glossed ‘the big circles are among the blue things’.

(6) a. Every big circle is blue.
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b. {x: x is a big circle} ⊆ {x: x is blue}
c. {x: x is a big circle} = {x: x is a big circle} ∩ {x: x is blue}
d. ιX:BigCircles(X) � ∀x[Blue(x)]

A less common, though still reasonable, way to cash out the relational view is in
(6c): ‘the big circles are identical to the big circles that are blue’. This will be true if
and only if every big circle is blue. Romoli (2015) offers some reasons for thinking
the logical form in (6c) is preferable to the one in (6b) (having to do with how traces
of movement are interpreted and accounting for the conservativity generalization dis-
cussed in Sect. 1). On this view, every still expresses a relation between two sets,
just a different relation than is commonly thought, and a different second set than is
commonly thought.

Our interest here is in comparing the two versions of the relational view in (6b)
and (6c) to a restricted specification like (6d): ‘the big circles are such that being blue
is a feature of every one of them’. As noted, the important difference here is in how
the two grammatical arguments are treated. The relational (6b) and (6c) treat both
syntactic arguments—is blue and big circle in (6b) and is big circle that is blue and
big circle in (6c)—as logically on a par. But those same syntactic arguments play
different logical roles in (6d). Additionally, while (6d) represents the big circles as
such, the blue things are not represented; ‘Blue(x)’ is a predicate that applies to every
one of the big circles (though, to repeat, that the external argument is treated in a
first-order way in (6d) is not required for the specification to be restricted).

Viewed as a theorists’ way of specifying the truth-conditional content of (6a),
the specifications in (6b-d) are equivalent. But they can instead be viewed as dis-
tinct hypotheses about the nature of the mental representation—the “psycho-logical
form”—that serves as the meaning of (6a). Viewed this way, the formal distinctions
between (6b-d) may have cognitive import. For example, a mind that lacked the men-
tal analogue of the symbol ‘∩’ but possessed a mental analogue of the symbol ‘⊆’
could have (6b) as the meaning of (6a) but could not have (6c). Likewise, a mind that
completely lacked any ability to relate one set to another could nonetheless represent
(6d). Speakers with both minds would agree about the truth-conditions of (6a), but
nonetheless be tokening different thoughts in understanding the sentence (cp. Church
1941 on the distinction between functions in extension and functions in intension).

To derive behavioral predictions from these formally distinct representations, we
adopt the Interface Transparency Thesis of Lidz et al. (2011): verification procedures
employed in understanding a declarative sentence are biased toward algorithms that
directly compute the relations and operators expressed by the semantic representa-
tion that gives the meaning of that sentence, so that this representation is reflected
transparently in the cognitive procedure of evaluation. This linking hypothesis does
not imply that meanings are verification strategies, or that a given verification strategy
will always be used to evaluate a given meaning. Instead, the idea is that the details of
the representation—which relations and operations it explicitly encodes—will carry
some detectable influence on which cognitive strategy is used to evaluate that rep-
resentation. The precise strength of that influence will vary, but the thought is that
it will be enough to explain otherwise puzzling behavior, like participants adopting
a non-optimal strategy with respect to the task. On analogy, consider a linking hy-
pothesis that is more frequently used to underwrite linguistic claims: acceptability is
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evidence of grammaticality. Obviously, grammaticality isn’t the sole factor in deter-
mining acceptability. Sentences with multiple center-embeddings (the dog the mouse
the cat chased scared barked) strike even trained linguists as unacceptable, though
presumably for reasons other than ungrammaticality (as argued by Miller and Chom-
sky 1963). Still, grammaticality carries a detectable influence on acceptability. And
in the same way, the Interface Transparency Thesis maintains that representational
details of a meaning carry a detectable influence on the strategy used for verifying
that meaning in a given situation.

In practice, this influence of the meaning can be detected in carefully controlled
contexts; namely, when task factors are held equal and there is no obvious reason
to use an alternative strategy. To take one example of this linking hypothesis in ac-
tion, Pietroski et al. (2009) ask whether the meaning of most is specified in terms
of one-to-one correspondence or comparison of cardinalities. In their task, partici-
pants were asked to evaluate most of the dots are yellow with respect to displays of
blue and yellow dots that appeared on-screen for 200 milliseconds. On most display
types tested, participants showed signs of using a cardinality-based strategy: their
performance was characteristic of the Approximate Number System (e.g., Feigenson
et al. 2004; Dehaene 2011). Importantly, participants in their experiment verified the
sentences using cardinality estimations despite the fact that a strategy of one-to-one
correspondence was not only available but was a superior alternative. That is, partici-
pants were more accurate and faster to respond if they were shown the same displays
and asked whether there were leftover yellow dots. This correspondence-based “find
the leftover” strategy would have given the same answer: most of the dots are yellow
just in case the yellow dots correspond one-to-one with the blue dots with at least
one remainder.2 The fact that participants eschewed this “find the leftover” strategy
in favor of an inferior cardinality-based alternative calls out for explanation. Given
that there is no other reason to prefer the cardinality-based strategy, the meaning of
the expression is likely to blame. So, Pietroski et al. reasoned, most is specified in
terms of cardinality, not in terms of correspondence.

That said, this finding does not predict that a cardinality-based strategy will always
be used to verify sentences with most. Sometimes, non-linguistic pressures in favor of
one particular strategy outweigh the bias to use a strategy transparent to the meaning
being evaluated (just as sometimes, cognitive pressures outweigh grammaticality in
determining acceptability). Pietroski et al. (2009) present one such case. In their “col-
umn pairs sorted” condition, blue and yellow dots were lined up next to each other.
Here, participants used line length—a computation far more accurate than cardinal-
ity comparison—as a proxy for whether the sentence most of the dots are yellow was
true or false: if the yellow line is longer, respond “true”. Participants were (wisely)
resorting to a superior strategy given the task at hand. But since this change in strat-
egy is explainable without appealing to properties of the meaning under evaluation,
Pietroski et al. concluded nothing about the meaning of most.

2Unless one thinks that most means something like “significantly more than half” for some pragmatically
determined threshold value; see Denić and Szymanik (2022) for discussion of this possibility. In which
case, one might prefer to replace “with at least one remainder” with “with a significant remainder, given
some pragmatically determined threshold”.
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Returning to the current case-study of every, the question at issue is not whether
the determiner meaning is specified in terms of cardinality or correspondence, but
whether it treats its syntactic arguments symmetrically (as on the relational view) or
asymmetrically (as on the restricted view). Given Interface Transparency, the can-
didate psycho-logical forms (6b-d) give rise to different predictions about how par-
ticipants will evaluate the sentence (6a) in suitably controlled settings. Given the
relational specification in (6b), all else being equal, we should expect participants
to evaluate (6a) by representing the big circles, independently representing the blue
things, and relating the two groups. Given the relational (6c), all else being equal, we
should expect participants to represent the big circles, independently represent the
big blue circles (perhaps directly or perhaps by independently representing the big
circles, the blue things, and computing the intersection of these sets), and relate the
two groups. But given the restricted (6d), we should expect participants to treat the
big circles and the blue things differently (perhaps opting to represent the big circles,
and then deciding if they are distributively blue without bothering to independently
represent the blue things or the big blue things as such). That is, on the restricted
view, we should expect the logical asymmetry to give rise to a corresponding psy-
chological asymmetry. The remainder of this section details the kind of evidence we
seek in asking whether there is such an asymmetry.

Previous psycholinguistic work provides reason for thinking that phrases like ev-
ery big circle or all big circles lead participants to mentally group the quantifier’s
internal argument (the big circles, in this case), even when combined with distribu-
tive predicates like be blue (Knowlton 2021; Knowlton et al. 2022a).3 To determine
whether there is evidence of an asymmetry, then, we need to establish whether par-
ticipants likewise mentally group the quantifier’s second argument (the blue things,
in this case). Such a cognitive strategy is certainly available to participants. Previous
work in psychophysics shows that adults and children are perfectly able to represent
up to three psychological groups in parallel (Halberda et al. 2006; Zosh et al. 2011).
Given that there is no reason to avoid representing two groups, then, the question is
whether participants naturally will do so when evaluating sentences like every big
circle is blue.

Fortunately, there are many behavioral signatures of participants having repre-
sented some individual objects as a psychological group, including the cardinality,
the average hue, and the center of mass of visually-presented objects (e.g., Ariely
2001; Haberman and Whitney 2012; Whitney and Leib 2018). The experiments be-
low use cardinality knowledge as a proxy for whether participants mentally repre-
sented the extension of a given argument as a group during sentence evaluation. In
using this measure as a proxy, we do not mean to suggest that cardinality knowl-
edge is a necessary prerequisite for group representation. In principle, any “summary
statistic” properties could be used as evidence. But given that the prior work on how

3Given a manifestly collective predicate, like all students gathered in the hall, it might be less surprising
for participants to group the students. After all, an individual student cannot gather. But at least as it is used
in this experimental context, be blue is a distributive predicate in the sense that all the circles are blue if and
only if each individual circle is blue. Even so, the studies cited above find that participants psychologically
group the big circles upon encountering every big circle or all big circles to a greater extent than when
encountering each big circle in the very same experimental context.
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Fig. 1 A schematic depiction of the predicted verification strategies associated with each hypothesized
meaning of the sentence every big circle is blue. Both the standard relational view (i.e., (6b)) and the
augmented relational view (i.e., (6c)) call for somehow relating two independent samples from the domain.
The non-relational view (and in particular (6d)) predicts participants will only form a single grouping of
domain entities (Color figure online)

many groups can be extracted in parallel relied on cardinality (Halberda et al. 2006;
Zosh et al. 2011), we opt to also rely on cardinality here.

The specific predictions, then, are as follows. If participants are asked to evaluate
a sentence like every big circle is blue, the relational (6b) predicts that they will repre-
sent both the big circles and the blue things, and consequently encode the cardinality
of both groups. The relational (6c) predicts that they will represent the big circles
and the big blue circles, and consequently encode the cardinality of both groups.
As noted above, there is good reason for thinking that a strategy involving encod-
ing and comparing two groups’ (and even three groups’) cardinalities is cognitively
available. But in contrast to those relational views, the restricted (6d) predicts that
participants will treat the extensions of its two grammatical arguments differently. In
principle, that could amount to grouping the external argument to the exclusion of the
internal argument. But since past work finds that evaluating these sorts of sentences
lead participants to mentally group the internal argument, finding here that they only
represent—and thus encode the cardinality of—the big circles would provide support
to the restricted view. Differences between the predicted verification strategies asso-
ciated with relational and non-relational meanings is given schematically in Fig. 1.

3 Experiments

3.1 Experiment 1: every big circle is blue

The five experiments reported here follow the same basic structure. Participants first
saw a sentence like every big circle is blue and were then shown displays consisting of
different sized (big, medium, and small) and different colored (blue, red, and yellow)
circles (see Fig. 2). This display remained on the screen for 1 second, after which
participants pressed ‘J’ or ‘F’ to judge the sentence as true or false relative to the
picture. Participants were subsequently asked to recall the cardinality of some group
of circles. Some follow-up questions probed the determiner’s internal argument (e.g.,
“how many big circles were there?”); others probed its external argument (e.g., “how
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Fig. 2 Trial structure of the experiments. Participants were initially asked to verify a quantificational sen-
tence with respect to a dot-display. They were then asked to recall the cardinality of a particular group: the
group defined by the internal argument (e.g., “how many big circles were there?”), the group defined by
the external argument (e.g., “how many blue circles were there?”), or the group defined by the conjunction
of both (e.g., “how many big blue circles were there?”) (Color figure online)

many blue circles were there?”); others probed the conjunction of both arguments
(e.g., “how many big blue circles were there?”).

To control for any differences stemming from visual salience, participants’ re-
sponses were compared against a baseline task. This task used the exact same stimuli
but asked participants the cardinality question before displaying the image. For ex-
ample, they might be asked “how many blue circles are there?”, see the image for 1
second, then offer their response. On this baseline task, participants should perform
as well as their visual systems will allow. Cardinality estimates following sentence
verification can then be compared against this optimal-performance baseline. As dis-
cussed above, the relational view predicts two groups to be represented, and therefore
predicts participants to do as well following sentence verification as on baseline for
at least two out of the three cardinality questions. On the other hand, the restricted
view predicts an asymmetry between the quantifier’s two arguments. In particular,
participants are expected to perform similarly to the optimal-performance baseline
only when asked about the cardinality of the group defined by the quantifier’s inter-
nal argument (i.e., size questions).

3.1.1 Method

Participants Fifty-three participants were recruited online using Amazon Mechani-
cal Turk. All passed an English screener and gave informed consent prior to partic-
ipating in the experiment. Two participants were excluded from further analysis for
performing at chance or below on the true/false portion of the verification task. Three
participants were excluded for taking longer than 5 seconds, on average, to respond to
follow-up cardinality questions. This left 48 participants (which served as our target
n for all subsequent experiments).
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Materials Sentences in the verification task were of the form “Every {big/medium/
small} circle is {blue/red/yellow}”. Half were true with respect to the display and half
were false. The displays themselves consisted of a grey background with circles that
were either blue, red, or yellow and were either big, medium, or small (see Fig. 2).
Medium circles had holes in the middle to make them more easily distinguishable
from the other two sizes (Chen 1982, 2005). Each display contained up to 48 circles
from the nine possible size/color combinations. Each combination contained up to 10
circles, and in any given display there were six size/color combinations that contained
at least one circle. False trials had between one and three disconfirming circles (e.g.,
if the sentence was “every big circle is blue” and the trial was false, then there would
be between one and three big circles that were yellow or red).

Follow-up cardinality questions either probed the target size (big circles in our
running example), the target color (e.g., blue circles), the target size/color combina-
tion (e.g., big blue circles). Filler trials probing a distractor group (sizes, colors, or
size/color combinations not mentioned in the initial sentence) were also included.

Procedure Participants were first given a brief set of instructions, during which circle
sizes and colors were labeled: “In this task, you’ll look at pictures of circles. There
will be different types. . . ”. After being introduced to the circles, participants were
given three practice trials in which an initial question was displayed (e.g., “how many
big red circles are there?”), pressing the spacebar revealed an image for 1.5 seconds,
and then the question was displayed again (e.g., “how many big red circles were
there?”). After completing the three practice trials, participants were told the real test
would begin.

Participants then completed 15 trials of the baseline task in which they were pre-
sented with a question that probed a size, color, or size/color combination (e.g., “how
many big circles are there?”). After pressing spacebar, the image was displayed for
1 second, followed by a reiteration of the question (e.g., “how many big circles were
there?”). Participants typed their response and continued to the next trial. Following
this task, participants were instructed that they performed well and in the next half of
the task, the initial question would be replaced with a sentence for them to evaluate.
They then completed 18 trials of the sentence verification task. They were presented
with a sentence (e.g., “every big circle is blue”) and were then shown the correspond-
ing display for 1 second followed by a reiteration of the sentence (e.g., “every big
circle was blue”). Their first task was to indicate whether they thought the descrip-
tion was true or false relative to the picture (by pressing ‘J’ or ‘F’ on their keyboard).
After answering this initial verification task, they were given a follow-up cardinality
question (e.g., “how many big circles were there?”). They typed in a number and
progressed to the next trial.

3.1.2 Results

Participants’ average accuracy on the initial true/false verification task was 74% (to
be maximally conservative, we include all data in the statistical results reported be-
low, but the results remain unchanged if only data from correctly-answered trials are
included). The main dependent measure to consider is cardinality estimation accu-
racy. In particular, we are concerned with estimation accuracy following sentence
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Fig. 3 Difference in mean percent error between the baseline cardinality estimation task and following the
sentence verification task in Experiment 1 (“Every {big/medium/small} circle is {blue/red/yellow}”). In
general, higher percent error reflects poorer estimations. For example, if the actual number of dots shown
was 10, a response of 8 or 12 would result in 20% error; a response of 6 or 14 would result in 40% error. A
larger difference in mean percent error means that post-verification performance was worse than baseline
performance for that question type

verification relativized to baseline cardinality estimation accuracy. To the extent that
participants did represent a particular group during sentence verification, their cardi-
nality estimation accuracy for that group should be no worse post-verification than
it was in the baseline task (i.e., they should know the cardinality as well as their
visual system will allow). But if they failed to represent a particular group, their
baseline cardinality estimation accuracy should be better for that group than their
post-verification accuracy (i.e., they should be expected to perform worse than their
visual system will allow). By comparing cardinality estimation accuracy for each
group (size; color; conjunction) separately, we control for any differences in visual
salience (without relativizing to such baselines, it might be that participants perform
better on one question type simply because that feature is an easier one for the visual
system to extract).

A simple way to assess accuracy in general is to compute the percent error on each
trial (e.g., if the actual number of circles shown was 10, a response of 8 or 12 would
result in 20% error; a response of 6 or 14 would result in 40% error). In cardinal-
ity estimation tasks, error nearly always goes in one direction: participants routinely
underestimate the actual number presented (e.g., Krueger 1984). So we computed a
difference score for each trial type: the mean difference in percent error between the
baseline cardinality estimation task and the sentence verification task (any trials on
which error surpassed 250% were removed as these were likely to reflect typos). As
seen in Fig. 3, the predictions of the restricted view were born out. Average percent
error was similar post-verification and on the baseline task for cardinality questions
that probed the group defined by the determiner’s internal argument (size). But aver-
age percent error was much higher than baseline for questions that probed the exter-
nal argument (color) and for questions that probed the conjunction of both (size and
color).

Performing paired t-tests on our subjects’ mean percent error in the two tasks
confirms that accuracy when asked about the group defined by the internal argu-
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ment (size) does not significantly differ from size-question performance on the base-
line task (t(47)=0.32, p=.753). But accuracy when asked about the group defined
by the external argument (color) does significantly differ from performance on the
corresponding baseline color-questions (t(47)=7.00, p<.001). The same is true for
conjunction-questions (t(47)=9.76, p<.001).

That said, arguing from this simple analysis relies on the non-significance of the
size-question comparison. In an effort to avoid reasoning from non-significant results,
we can adopt a more complex analytical approach. This approach relies on a widely-
used model of cardinality estimation that allows for describing performance on a
cardinality estimation task with two main parameters: a measure of accuracy (β) and
a measure of variability (σ ) (see Odic et al. 2016 for a helpful review). Responses (y)
to being shown some number of things (x) is modeled as the Gaussian distribution in
(7), where α is a scaling factor.

(7) y ∼ N
(
mean = αxβ, sd = σ × αxβ

)

Intuitively, the gist of this model is that a making a numerical estimate is like
taking a sample from a normally-distributed pattern of activation on a ‘mental num-
ber line’. If shown x things, this activation will generally be centered around x, with
decreasing activation on either side of x. But our perceptual systems lead to a system-
atic underestimation of number, so oftentimes the activation will be centered around
a value lower than x. Such routine underestimation leads to one source of ‘noise’ in
the estimate of x and is captured by the accuracy parameter β . With an accuracy of
.9, for example, encountering 10 things would lead to an activation pattern centered
not around 10, but around 10.9 ≈8. In addition to underestimation, there is a second
source of ‘noise’ in the estimate of x: internal variability in the activation pattern
around xβ . This variability is reflected in the size of the standard deviation, which
increases linearly with the mean (i.e., the representation of small numbers is more
precise than the representation of large ones). The rate at which the standard devia-
tion increases differs from person to person (and trial to trial), and this difference is
captured by the parameter σ . The scaling factor α is added to both the mean and the
standard deviation, to ensure that this model can apply similarly in various numeri-
cal ranges (e.g., 30 to 50 objects to enumerate, as in this experiment versus 300 to
500 objects, as in others). But the crucial parameters are those reflecting estimates of
accuracy (β) and precision (σ ).

To the extent that participants’ performance on both cardinality estimation tasks
(baseline and post-verification) is identical, that performance should be fit equally
well by this standard model. But using this model as a starting point, we can consider
the contrasting model in (8), which allows the parameters to vary as a function of the
task. For example β0 is supplemented with β1TASK. If we code the baseline task as
0 and the post-verification task as 1, then the value of β1 represents the difference
in accuracy between baseline cardinality questions and post-verification cardinality
questions. If the baseline accuracy is .9, for example, and β1 is -.1, that suggests that
participants were less accurate at answering “how many?” questions following the
sentence verification task.

(8) y ∼ N
(

mean = (α0 + α1T ASK)xβ0+β1T ASK

sd = (σ0 + σ1T ASK) × mean

)
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Table 1 Model comparisons for Experiment 1. Best model comparison values in bold

Group probed Model AIC BIC

Size
Null 1763.836 1775.772

Effect of task 1767.455 1791.328

Color
Null 1580.239 1592.043

Effect of task 1474.125 1497.734

Conjunction
Null 1384.370 1396.175

Effect of task 1248.957 1272.567

For each trial-type, these two models were fit using maximum likelihood estima-
tion. Two model comparison measures were considered: the Akaike Information Cri-
terion (AIC) and Bayesian Information Criterion (BIC) values, which reward models
for capturing the data and penalize them for including greater numbers of parameters
(Schwarz 1978; Stone 1979; Akaike 1998). Lower values are indicative of striking a
better trade-off between fit and complexity.

As seen in Table 1, both measures of model comparison align with the predic-
tions of the restricted view. That is, for size-questions, both the AIC and BIC support
the null model, which does not differentiate baseline and post-verification cardinal-
ity estimation accuracy. This suggests that there is no difference between baseline
and post-verification performance when asked about a group defined by size. But
for color-questions and conjunction-questions, both measures support the augmented
model that takes into account the task.

Examining the coefficients of the best-fitting models for color- and conjunction-
questions in Table 2 provides further support for the restricted view. Namely, in the
best-fitting models, accuracy decreases from baseline to post-verification (indicated
by the negative β1 estimate) whereas variability increases (indicated by the positive
σ1 estimate). This suggests that the effect is found along both of the relevant dimen-
sions to consider when assessing cardinality estimation performance: for color and
conjunction questions, participants performed significantly worse than baseline fol-
lowing sentence verification.

As a reviewer points out, we can also fit a single model that allows accuracy and
precision to vary based on task type (baseline; sentence verification), question type
(size; color; conjunction), and the interaction between the two, as in (9). The interpre-
tation of the resulting coefficients is more complicated, but, given the results above,
the prediction is clear: the interaction between task and question type should matter.

(9) y ∼ N

⎛

⎝
mean = (α0 + α1T ASK + α2QUEST ION + α3T ASK × QUEST ION)

×xβ0+β1T ASK+β2QUEST ION+β3T ASK×QUESTION

sd = (σ0 + σ1T ASK + σ2QUEST ION + σ3T ASK × QUESTION) × mean

⎞

⎠

As expected, both model comparison measures favor the model in (9) over an
alternative that includes terms for main effects of both task and question type but
excludes the interaction between them (AIC: 4499.358 vs. 4540.873; BIC: 4559.939
vs. 4586.308). Moreover, we observe a significant effect of the interaction between
task and question type both for accuracy (β3=-.237 [95% CI: -.323 to -.152]; z=2.78;
p<.01) and for variability (σ3=.198 [95% CI: .169 to .227]; z=6.80; p<.001).
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Table 2 Model coefficients for color- and conjunction-questions in Experiment 1. Coefficients showing
effect of task in bold

Group probed Coefficient Estimate SE z value P(z)

Color

α0 1.067 0.062 17.16 <.001 ***

α1 0.587 0.204 2.88 <.01 **

β0 .9594 0.029 33.27 <.001 ***

β1 -.2199 0.064 -3.43 <.001 ***

σ0 .1574 0.008 18.88 <.001 ***

σ 1 .1815 0.021 8.66 <.001 ***

Conjunction

α0 1.032 0.044 23.61 <.001 ***

α1 0.871 0.190 4.58 <.001 ***

β0 .9720 0.022 43.28 <.001 ***

β1 -.3401 0.055 -6.22 <.001 ***

σ0 .1328 0.007 18.96 <.001 ***

σ 1 .1628 0.018 9.15 <.001 ***

To summarize the results, then, after being asked to evaluate a sentence like “every
big circle is blue”, participants recall the cardinality of the big circles as well as their
visual system will allow. But they are less accurately and less precisely able to recall
the cardinality of the blue circles and the cardinality of the big blue circles.

3.1.3 Discussion

As noted above, these results align with the restricted view: the group named by
every’s internal argument (e.g., “the big circles”) seems to be explicitly represented
by participants during sentence verification, but the same cannot be said for the group
named by every’s external argument (e.g., “the blue things”).4 This suggests that
participants do not understand a sentence like “every big circle is blue” to express a
relation between the big circles and the blue things, or between the big circles and
the big blue circles.

The result that participants do not accurately recall the cardinality of the group
defined by conjunction—big blue circles—is particularly surprising given that half
of the trials in the experiment are true, meaning that the answer is the same for both
“how many big circles were there?” and “how many big blue circles were there?”
(if there were 10 big circles, and every one of them was blue, then there were 10

4A reviewer rightly notes that these results do not rule out the following possibility: maybe the things
named by the external argument are mentally grouped at some stage of processing, but that group is quickly
discarded before the subsequent cardinality question. While logically possible, this strikes us as unlikely,
given what is known about the workings of the Approximate Number System (especially the result noted
above that observers can represent the cardinality of three groups simultaneously with no apparent cost
over and above representing just one; Halberda et al. 2006; Zosh et al. 2011). In any case, for the present
argument, all that is needed is a difference in how both of the quantifier’s arguments are treated, as the
relational view predicts them to be treated on a par and the restricted view predicts them to be treated
asymmetrically. Even if the present results merely reflect a difference in likelihood of the extension of
either argument being retained in memory, the finding would still fit better with the restricted view.
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big blue circles). Nonetheless, participants only encode and recall the cardinality of
big circles. This further serves to support the idea that they only represent the group
defined by the internal argument of every and it further confirms that the experimental
design taps into strategies resulting from evaluating an expression’s meaning, not
knowledge obtained from building a mental model of the display or from downstream
inferences. That is, the inference from “every big circle is blue” and “there were 10
big circles” to “there were 10 big blue circles” is not one that participants seem to
draw in this task.

To be sure, the results of Experiment 1 only pertain to the meaning of every,
whereas the restricted quantification view is a claim about quantificational determiner
meanings in general. To begin to address the generalizability of the result, Experiment
2 replicates the effect using sentences in which universal quantification is indicated
with all instead of every.

3.2 Experiment 2: all big circles are blue

If all is like every in having a restricted meaning, we should observe the same results
as in Experiment 1: similar post-verification and baseline performance when asked
to estimate the cardinality of a group defined by the relevant size, but worse post-
verification performance when asked to estimate the cardinality of a group defined
by the relevant color and when asked to estimate the cardinality of a group defined
by the relevant conjunction of size and color. Such a result would help ensure that the
findings of Experiment 1 do not merely reflect a quirk of every.

3.2.1 Method

Participants Fifty participants were recruited online using Amazon Mechanical Turk.
All passed an English-screener and gave informed consent prior to participating in
the experiment. One participant was excluded from further analysis for performing
at chance or below on the true/false portion of the verification task. One participant
was excluded for taking longer than 5 seconds, on average, to respond to follow-up
cardinality questions. This left 48 participants.

Materials Materials were identical to Experiment 1 in all respects except that every
was replaced by all and the necessary plural agreement was added. Sentences in the
verification task were of the form “All {big/medium/small} circles are {blue/red/yel-
low}”. Half were true with respect to the display and half were false.

Procedure The procedure was identical to that of Experiment 1. Participants com-
pleted 15 trials of the baseline task in which they answered a cardinality question
that probed a size, a color, or a size/color combination (e.g., “how many big circles
are there?”). They subsequently completed 18 trials of the sentence verification task,
in which they first rendered their true/false judgment about sentences like “all big
circles are blue”, and then were asked the same sorts of cardinality questions as in
Experiment 1.
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Fig. 4 Difference in mean
percent error between the
baseline cardinality estimation
task and following the sentence
verification task in Experiment 2
(“All {big/medium/small}
circles are {blue/red/yellow}”)

Table 3 Model comparisons for Experiment 2. Best model comparison values in bold

Group probed Model AIC BIC

Size
Null 1695.114 1707.013

Effect of task 1697.545 1721.341

Color
Null 1567.348 1579.207

Effect of task 1491.407 1515.127

Conjunction
Null 1435.401 1447.150

Effect of task 1412.135 1435.633

3.2.2 Results

Participants’ average accuracy on the initial true/false verification task was 74.1%,
nearly identical to accuracy in Experiment 1. Figure 4 shows that the predictions of
the restricted view were again borne out. That is, we observe the same pattern of
results in Experiment 2 with all as in Experiment 1 with every. In terms of simple
comparisons, participants’ mean percent error did not significantly differ from base-
line on post-verification cardinality questions that probed the target size (t(47)=0.08,
p=.935) but participants performed significantly worse than baseline when a cardinal-
ity question probed the target color (t(47)=6.84, p<.001) or the relevant conjunction
of size and color (t(47)=6.20, p<.001).

Turning to model comparisons, we again find that both the AIC and BIC in Table 3
give reason to prefer the null model for size-questions and the augmented model for
color-questions and conjunction-questions, as predicted by the restricted view. Like-
wise, Table 4 shows the same pattern of decreasing accuracy and increasing variabil-
ity that we saw in Experiment 1. Namely, for color- and conjunction-questions there
is a negative β1 estimate and a positive σ1 estimate.

3.2.3 Discussion

This replication suggests that the results from Experiment 1 do not reflect a quirk of
every: good knowledge of the cardinality of the group named by the internal argument
but not of the group named by the external argument or by the conjunction of both
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Table 4 Model coefficients for color- and conjunction-questions in Experiment 2. Coefficients showing
effect of task in bold

Group probed Coefficient Estimate SE z value P(z)

Color

α0 1.110 0.064 17.21 <.001 ***

α1 1.035 0.275 3.76 <.001 ***

β0 .9484 0.030 32.10 <.001 ***

β1 -.3606 0.069 -5.26 <.001 ***

σ0 .1828 0.010 19.02 <.001 ***

σ 1 .1375 0.020 6.75 <.001 ***

Conjunction

α0 1.087 0.080 13.57 <.001 ***

α1 0.673 0.177 3.81 <.001 ***

β0 .9559 0.039 24.63 <.001 ***

β1 -.2622 0.061 -4.33 <.001 ***

σ0 .2179 0.012 18.13 <.001 ***

σ 1 .0633 0.020 3.23 <.01 **

arguments. Of course, this effect might still be unique to English universal quantifiers
(as opposed to proportional quantifiers like most, negative quantifiers like no, and
existential quantifiers like some); we return to this possibility in Sect. 4.

In the meantime, we consider other possible alternative explanations for the
present results. One potential concern is that the surface-level asymmetry between
the two predicates could explain the results. The internal argument is introduced as
an NP (e.g., “big circle” or “big circles”) whereas the external argument is introduced
as a VP (e.g., “is blue” or “are blue”). It could be that this low-level difference in how
these predicates are introduced plays a role in driving attention to the group named by
the internal argument to the exclusion of the group named by the external argument.
Namely, it is possible that, regardless of the sentence meaning, participants will never
mentally group (and thus enumerate) things named by a property introduced as “is
X”. Likewise, it might be that, regardless of the sentence meaning, they always men-
tally group (and thus enumerate) things named by a property introduced as “X circle”.
To be sure, if this sort of reasoning does explain our results, it is not obviously an ar-
gument in favor of relational quantification. After all, the standard view is that every
A is B treats the As and the Bs on a par, despite the syntactic differences in how the
predicates A and B are introduced. Nonetheless, Experiments 3 and 4 aim to address
this possibility empirically, by equating how the two predicates are introduced.

3.3 Experiment 3: every circle that is big is blue

In this version of the task, the relevant part of the internal argument (e.g., “big”) is
introduced in a relative clause. As a result, both predicates are introduced in the same
way, at least on the surface (e.g., “is big” and “is blue”). Obviously there are still
differences between circle that is big and is blue, but the purpose of this manipu-
lation is to control for the surface-level difference present in Experiments 1 and 2.
If that sort of surface-level difference between how the predicates were introduced
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(in a tensed VP versus in an NP) were for some reason responsible for the results of
Experiments 1 and 2, owing to some psychological concomitant of the grammatical
distinction, then the results should disappear in the present experiment. On the other
hand, the restricted view predicts that this manipulation should make no difference
and we should thus replicate the effects of Experiments 1 and 2: post-verification
performance is expected to be similar to baseline performance for size-questions but
worse for color- and conjunction-questions.

3.3.1 Method

Participants Fifty-three participants were recruited online using Amazon Mechani-
cal Turk. All passed an English-screener and gave informed consent prior to partic-
ipating in the experiment. Five participants were excluded from further analysis for
performing at chance or below on the true/false portion of the verification task. This
left 48 participants.

Materials Materials were identical to Experiment 1 except that the predicate in the in-
ternal argument was introduced with a relative clause. This led to sentences in the ver-
ification task being of the following form: “Every circle that is {big/medium/small}
is {blue/red/yellow}”. Half were true with respect to the display and half were false.

Procedure The procedure was identical to that of Experiments 1 and 2. Participants
completed 15 trials of the baseline task in which they answered a cardinality question
that probed a size, a color, or a size/color combination (e.g., “how many big circles
are there?”). They subsequently completed 18 trials of the sentence verification task,
in which they were first asked to offer a true/false judgment about sentences like
“every circle that is big is blue” and subsequently asked the same sorts of cardinality
questions as in Experiments 1 and 2.

3.3.2 Results

Participants’ average accuracy on the initial true/false verification task was 74.8%.
As seen in Fig. 5, this change in how the question was posed led to the same pattern
of results as in Experiments 1 and 2. Participants’ mean percent error did not signif-
icantly differ from baseline on post-verification cardinality questions that probed the
target size (t(47)=0.98, p=.333), but participants performed significantly worse than
baseline when a cardinality question probed the target color (t(47)=5.94, p<.001) or
the relevant conjunction of size and color (t(47)=4.76, p<.001).

Turning to the model comparison analysis, the main results of Experiments 1 and
2 are replicated again: both the AIC and BIC in Table 5 give reason to prefer the null
model for size-questions and the augmented model for color-questions. Conjunction-
questions produced a less conclusive result, as the AIC and BIC disagree (likely ow-
ing to the fact that BIC penalizes additional parameters to a greater extent).

Looking at the model coefficients in Table 6, the significant positive σ1 estimate
suggests that if the effect is present for conjunction-questions, it is driven by an in-
crease in variability.
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Fig. 5 Difference in mean
percent error between the
baseline cardinality estimation
task and following the sentence
verification task in Experiment 3
(“Every circle that is
{big/medium/small} is
{blue/red/yellow}”)

Table 5 Model comparisons for Experiment 3. Best model comparison values in bold

Group probed Model AIC BIC

Size
Null 1714.583 1726.403

Effect of task 1718.282 1741.923

Color
Null 1513.341 1525.208

Effect of task 1483.49 1507.225

Conjunction
Null 1462.979 1474.824

Effect of task 1455.743 1479.431

Table 6 Model coefficients for color- and conjunction-questions in Experiment 3. Coefficients showing
effect of task in bold

Group probed Coefficient Estimate SE z value P(z)

Color

α0 1.108 0.081 13.71 <.001 ***

α1 0.448 0.161 2.78 <.01 **

β0 .9596 0.036 26.80 <.001 ***

β1 -.2060 0.057 -3.59 <.001 ***

σ0 .1908 0.010 19.02 <.001 ***

σ 1 .0807 0.018 4.50 <.001 ***

Conjunction

α0 1.189 0.084 14.21 <.001 ***

α1 0.116 0.141 0.83 .408

β0 .9129 0.036 25.17 <.001 ***

β1 -.0751 0.057 -1.32 .187

σ0 .2130 0.011 18.76 <.001 ***

σ 1 .0600 0.019 3.19 <.01 **

3.3.3 Discussion

Though the conjunction result is weaker, the difference between baseline and post-
verification color-questions is clearly replicated. Experiment 3 thus offers at least a
replication of the main result from Experiment 1 while controlling for surface-level
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differences by introducing both predicates within VPs. Expanding on this control,
Experiment 4 offers another way to equate the introduction of the predicates; namely,
by introducing both predicates within NPs.

3.4 Experiment 4: every big one is a blue one

As with Experiment 3, this version of the task attempts to equate how both predicates
are introduced. Experiment 4 does so by introducing both predicates as modifiers of
“one”. Namely, sentences like “every big one is a blue one” were used. The use of
pronominal one might introduce its own issues, since it requires anaphoric interpre-
tation. But, while this may add additional noise, we assume that this added complica-
tion will cause no major problems, as the intended interpretation, with one anaphoric
to circles, seems tolerably clear in the context of the experiment (answering ques-
tions about circles). So if surface-level differences between how the predicates were
introduced were responsible for the results of Experiments 1-2, the results should
disappear in the present experiment. On the other hand, if a restricted meaning is re-
sponsible for the observed asymmetry, then this manipulation should likewise make
no difference and we should replicate the effects of Experiments 1 and 2: high cardi-
nality estimation accuracy on size questions but comparatively low accuracy on color
and conjunction questions.

3.4.1 Method

Participants Fifty-one participants were recruited online using Amazon Mechanical
Turk. All passed an English-screener and gave informed consent prior to participat-
ing in the experiment. Two participants were excluded from further analysis for per-
forming at chance or below on the true/false portion of the verification task. One
participant was excluded for taking longer than 5 seconds, on average, to respond to
follow-up cardinality questions. This left 48 participants.

Materials Materials were identical to Experiment 1 except that “circle” was not men-
tioned in sentences in the verification task. Instead, sentences had the following form:
“Every {big/medium/small} one is a {blue/red/yellow} one”, where context made it
clear that “Every big one” referred to every big circle. Half of the sentences were true
with respect to the display and half were false.

Procedure The procedure was identical to that of Experiments 1-3. Participants com-
pleted 15 trials of the baseline task in which they answered a cardinality question that
probed a size, a color, or a size/color combination (e.g., “how many big circles are
there?”). They subsequently completed 18 trials of the sentence verification task, in
which they offered true/false judgments of sentences like “every big one is a blue
one” before being asked the same sorts of cardinality questions as in Experiments 1-
3.
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Fig. 6 Difference in mean
percent error between the
baseline cardinality estimation
task and following the sentence
verification task in Experiment 4
(“Every {big/medium/small}
one is a {blue/red/yellow} one”)

Table 7 Model comparisons for Experiment 4. Best model comparison values in bold

Group probed Model AIC BIC

Size
Null 1658.952 1670.749

Effect of task 1656.721 1680.314

Color
Null 1708.582 1720.564

Effect of task 1569.476 1593.440

Conjunction
Null 1393.118 1404.883

Effect of task 1350.246 1373.776

3.4.2 Results

Participants’ average accuracy on the initial true/false verification task was 73.1%.
As seen in Fig. 6, this replication was successful. Participants did not perform signif-
icantly different from baseline when asked a cardinality question probing target size
(t=.03, p=.979), but they were significantly worse than baseline when asked about the
target color (t=5.04, p<.001) or the relevant conjunction of features (t=4.79, p<.001).
And in terms of model comparison, Table 7 shows that the AIC and BIC both favor
the augmented model for color-questions and conjunction-questions, as predicted.

Interpreting the results are slightly more complicated when it comes to size-
questions. The BIC prefers the null model, as predicted, but the AIC favors the aug-
mented model. However, examining the model coefficients in Table 8 reveals that
this difference is driven by an apparent decrease in variance (a negative σ1 estimate)
following sentence verification. In other words, participants performed slightly bet-
ter on post-verification size-questions than on baseline size questions (to be precise,
they were more precise following sentence verification). We suspect this is a spuri-
ous result, and it might be that the added complication of including pronominal one
contributed to a noisier overall result in Experiment 4.

3.4.3 Discussion

As in the previous experiments, cardinality estimation performance on color-
questions in Experiment 4 was worse than baseline along both of the relevant di-
mensions (accuracy and precision). Taken together with Experiment 3 (e.g., “every
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Table 8 Model coefficients for size-, color-, and conjunction-questions in Experiment 4. Coefficients
showing effect of task in bold

Group probed Coefficient Estimate SE z value P(z)

Size

α0 1.695 0.181 9.34 <.001 ***

α1 -0.217 0.222 -0.98 .330

β0 .7357 0.053 13.99 <.001 ***

β1 .0702 0.068 1.03 .304

σ0 .3318 0.019 17.41 <.001 ***

σ 1 -.0591 0.024 -2.44 <.05 *

Color

α0 0.899 0.050 17.86 <.001 ***

α1 1.374 0.249 5.52 <.001 ***

β0 1.052 0.028 37.57 <.001 ***

β1 -.4603 0.060 -7.66 <.001 ***

σ0 .1715 0.009 19.87 <.001 ***

σ 1 .1617 0.021 7.82 <.001 ***

Conjunction

α0 1.076 0.068 15.71 <.001 ***

α1 0.135 0.129 1.04 .297

β0 .9334 0.033 27.90 <.001 ***

β1 -.0500 0.058 -0.87 .385

σ0 .1809 0.010 18.43 <.001 ***

σ 1 .1151 0.019 6.03 <.001 ***

circle that is big is blue”), these results militate against an explanation in terms of
some low-level differences in how the two predicates are introduced. It doesn’t seem
to be true that participants never mentally represent groups named by predicates in-
troduced in VPs, and it likewise doesn’t seem to be true that participants always
mentally represent groups named by predicates introduced within NPs.

Nonetheless, the analyses presented above are complicated. And one may feel the
desire for a more straightforward dependent measure. Instead of comparing accuracy
and precision of numerical estimates, perhaps the same effect could be seen by simply
asking participants about their confidence in having attended the group in question.
A final replication, Experiment 5, provides a simpler dependent measure along these
lines: adding an ‘opt-out’ button that allows participants to declare they have no idea
how many circles there were.

3.5 Experiment 5: adding an opt-out button

Instead of measuring participants’ accuracy on cardinality questions, Experiment 5
measures their rate of choosing not to answer particular questions. The impetus for
this manipulation is the general worry that, in the preceding tasks, the focus on pro-
viding a number lead to some idiosyncratic guessing patterns related to number. If
idiosyncrasies of numerical responses exist, they might be responsible for making
participants look as if they perform worse at questions probing the external argument
and the conjunction of both arguments. As a solution, we adopt a response structure
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that has been fruitfully deployed elsewhere in psychophysics (e.g., Smith et al. 1995,
1997; Ferrigno et al. 2019): including an ‘opt-out’ button. The prediction is that if
participants represent a particular group of circles during verification, they should
opt-out no more often than baseline (which, as before, serves as a measure of how
difficult it is to enumerate each type of group). If participants do not represent a par-
ticular group, they should opt out more often than baseline.

Given the results of Experiments 1-4 and the restricted quantification view, we
expect participants to be more likely than baseline to opt out given a question that
probes a group picked out by the relevant color (the external argument) or size/color
combination. And we predict them to be no more likely than baseline to opt out of a
question probing the relevant size (the internal argument).

3.5.1 Method

Participants Fifty-six participants were recruited online using Amazon Mechanical
Turk. All passed an English-screener and gave informed consent prior to participat-
ing in the experiment. Four participants were excluded from further analysis for per-
forming at chance or below on the true/false portion of the verification task. Four
participants were excluded for taking longer than 5 seconds, on average, to respond
to cardinality questions. This left 48 participants.

Materials Materials were identical to Experiment 1 except that both the baseline task
and sentence verification task allowed participants the ability to opt out of answering
the cardinality question. Underneath the question (e.g., “How many big circles were
there?”) there was a large red button labeled “I don’t know!” that participants could
press in lieu of making a guess.

Procedure The procedure was identical to that of Experiments 1-4 except that partic-
ipants were instructed that they could press the red “I don’t know!” button, without
penalty, whenever they felt they would otherwise be making a complete guess. This
only applied to the follow-up cardinality questions; participants were still required to
answer the initial true/false questions, as in Experiments 1-4.

3.5.2 Results

Participants’ average accuracy on the initial true/false verification task was 73.8%.
Figure 7 shows that the predictions described above were borne out. We find a sig-
nificant interaction between question type and task (F2,94=7.33, p<.01; tests con-
ducted on participants’ rate of pressing the opt-out button). And as expected, partici-
pants were no more likely than baseline to opt-out of post-verification size-questions
(t(47)=.47, p=.640) but they were significantly more likely than to opt-out of post-
verification color-questions (t(47)=3.07, p<.01) and post-verification conjunction-
questions (t(47)=2.91, p<.01).
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Fig. 7 Difference in
participants’ average rate of
pressing the ‘I don’t know!’
opt-out button between the
baseline cardinality estimation
task and following the sentence
verification task (“Every
{big/medium/small} circle is
{blue/red/yellow}”). Higher
values reflect an increased rate
of opting-out following sentence
verification

3.5.3 Discussion

This result serves as additional confirmation of the original result. Namely, partic-
ipants know the cardinality of the group defined by the internal argument (size) as
well as their visual system allows, but show deficiencies in their knowledge of cardi-
nalities of the groups defined by the external argument (color) or the conjunction of
both arguments. As a result, they opt-out more often than their baseline rate for those
latter two types of questions. This relatively straightforward signature of the effect
does not require any psychophysical modeling and goes some way toward avoiding
the worry that the effect reflects something idiosyncratic about number estimation.

4 General discussion

Taken together, the results of Experiments 1-5 suggest that given a universally quan-
tified sentence to evaluate (e.g., every big circle is blue), participants explicitly group
the satisfiers of the determiner’s internal argument (e.g., big circle) but treat the satis-
fiers of its external argument (e.g., is blue) differently. Given the comparisons against
baseline measures of performance, we can be confident that this difference stems
from the sentence and not ancillary properties of the visual system.5 This finding
would be surprising if such determiners had genuinely relational meanings that call
for treating both the internal and external arguments as logically on a par (e.g., “the
big circles are among the blue things”). After all, when shown multi-colored arrays
of dots and tested for their estimation abilities (roughly similar to our baseline condi-
tion here), humans can recall the cardinality of three groups of items without incur-
ring any additional cost over and above representing only one group (Halberda et al.
2006; Zosh et al. 2011). So there is no reason to suspect a constraint from the visual
system that precludes representing two groups simultaneously. Yet participants seem

5Post-verification cardinality questions probing each feature were compared against baseline questions
probing that same feature, controlling for the possibility that one of the features is more visually salient
than the other. To further control for this possibility, Knowlton et al. (2021b) conducted a “swapped ar-
gument” version of Experiment 1, in which participants were asked to evaluate sentences like every blue
circle is big instead of every big circle is blue.
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Fig. 8 An example trial in
which the sentence was every
big circle is blue and it was true
relative to the display. In such a
case, the number of big circles
and big blue circles is the same
(Color figure online)

to avoid doing so in our task, despite knowing that they will be asked a “how many?”
question after each trial of sentence verification.

Even more surprisingly, the results described above suggest that participants do
not routinely represent the conjunction of the determiner’s internal and external ar-
guments (e.g., the big circles that are blue), at least not to the same degree that they
group the things named by the internal argument. This result is especially striking be-
cause on half of the trials that participants completed the quantificational sentences
used were true. For example, every big circle is blue in a case like Fig. 8. In such
cases, the big circles are the big blue circles. And consequently, there are the same
number of big circles as big blue ones. Nonetheless, we find that participants know
the answer to a cardinality question that probes the internal argument (e.g., the big
circles as such) perfectly well, but perform far worse when asked a question that de-
scribes the very same things as a conjunction of the internal and external arguments
(e.g., the big blue circles).

That participants fail to routinely and rapidly make the inference from every big
circle being blue to there being the same number of big circles and big blue circles is
important. For one thing, it tells against an augmented version of the standard view
on which the external argument of every big circle is blue is not is blue but big circle
that is blue (Romoli 2015).6 But perhaps more importantly, it bolsters the case for
thinking that the experimental design deployed here taps into verification strategies
that result from the meanings of the expressions themselves and not from downstream
inferences.

6This is the hypothesis indicated by the representation in (6c), namely ‘{x: x is a big circle} = {x: x is
a big circle} ∩ {x: x is blue}’. A reviewer rightly points out that the expectations about the behavioral
repercussions of this representation differ based on how one interprets ‘∩’. For simplicity, we assumed
‘{x: x is a big circle} ∩ {x: x is blue}’ and ‘{x: x is a big circle that is blue}’ are identical. But one might
instead suppose that ‘{x: x is a big circle} ∩ {x: x is blue}’ calls for representation both of the big circles
and of the blue circles and then arrives at representation of the big blue circles by means of a further
computation: intersecting those two sets. In this case, one might expect (6c) to lead to representation of
three sets: the big circles, the blue circles, and the big blue circles. In any case, the data do not bear out
this prediction.
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To elaborate on this point, imagine that participants had performed well both on
cardinality questions probing the internal argument and on cardinality questions prob-
ing conjunction. Given those results, one might have wondered whether there were
two distinct reasons for good cardinality estimation performance on the task. It might
have been that participants represented the group defined by the internal argument
as a result of formal properties of the meaning but represented the group defined by
the conjunction of both arguments as a result of inference (e.g., “there were about 10
big circles, every big circle was blue, therefore there must have been about 10 big
blue circles”). But if the experimental design had permitted two routes to success in
this way, one might wonder whether the same reasoning could explain the perfor-
mance on the questions probing the internal argument. It is not immediately clear
what such an inference would look like, but fortunately, the conjunction result re-
moves this potential worry altogether. It shows that participants were not performing
well on cardinality estimation questions thanks to explicit reasoning about the task.

Instead, the conjunction result provides more reason for thinking that meanings
have particular formal characteristics that matter. Assuming that what speakers know
when they know the meaning of every is an equivalence class of ways of specifying
its truth-conditions leaves no easy way of explaining the present results, even if that
equivalence class is somehow restricted to finite size. But if we instead suppose that
meanings are mental representations specified in a particular format, then what the
representation makes explicit can license some predictions about what participants
are likely to represent in the course of sentence understanding and verification. This is
not to say formal details of the representation in question will constitute an exhaustive
theory of what goes on in a participants’ mind when understanding a sentence, just
that meanings play a causal role and that their contribution can be detected.

In particular, these results are well-explained if, contra the relational view, de-
terminers like every and all have restricted meanings, which differentiate their two
grammatical arguments in their logical role. Moreover, the present results support the
further claim that these determiners have meanings that only call for grouping the
restriction, provided by the internal argument. That is, suppose that instead of de-
scribing a relation exhibited by the set of frogs and the set of green things, a sentence
like every frog is green has a meaning more like (5), repeated below, which introduces
only a single group, the frogs.

(5) a. ιX:Frogs(X) � ∀x[Green(x)]
b. ≈ Relative to the frogs, every thingx is such that itx is green

The green things, as such, are not explicitly encoded in this representation.7 Like-
wise, the conjunction of the two grammatical arguments is not explicitly encoded in

7The question arises whether the difference in logical role itself is responsible for this difference in which
groups are represented. Alternatively, this latter difference might be explained by a difference in whether
the terms are themselves group-denoting as opposed to being an open formula including a singular vari-
able. In this context, distinctions between each, every, and all might be relevant. The proposed meaning in
(5) is for every. Knowlton (2021) argues that both each and every have restricted meanings, and both dis-
tributively apply the predicate supplied by the external argument to the members of the restricted domain,
but only every calls for grouping that restricted domain; each calls for treating it as a series of independent
individuals. On the other hand, all is restricted and calls for grouping the restricted domain (like every),
but might not call for distributively applying the predicate supplied by the external argument.
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(5). But the grouping of the internal argument is. If understanding an expression like
every frog is green entails building a mental representation formally like (5) in this
respect, then it should come as no surprise that participants mentally represent the
frogs as such but not the green things or the green frogs. These latter two groups are
not highlighted by the representation.

To be sure, our claim that determiners have restricted—as opposed to relational—
meanings is not meant to be restricted to universal quantifiers like every. The same
should equally-well apply to proportional quantifiers like most and existential quan-
tifiers like some. Such non-universal quantificational content can be coded in non-
relational terms analogous to the treatment given here for every. For example, the
specification in (10) offers a restricted meaning of most of the frogs are green that
also reflects the psycholinguistic work discussed above (Pietroski et al. 2009; Lidz
et al. 2011; Knowlton et al. 2021a), which argues that the meaning of such a sentence
implicates a mental grouping of the frogs as well as the green frogs. Despite intro-
ducing two groups, the specification for most in (10) is still restricted in the following
sense: the determiner’s meaning permits only a single selection from the domain (the
frogs) and subsequently calls for further selection from that restricted domain (rela-
tive to the frogs, select the green ones).

(10) a. ιF:Frogs(F) � ∃Y:∀x[Y(x) ≡ Green(x)]{|Y| > (|F| – |Y|)}
b. ≈ Relative to the frogsF there are some thingsY (that are such that each

thingx is one of themY iff itx is green) such that theyY outnumber the
difference between the frogsF and themselvesY

This specification stands in contrast to a genuinely relational alternative: a mean-
ing that calls for two separate selections from the domain (the frogs and the green
things) and then intersects these selections to form the relevant conjunction (‘{x:
Frog(x)} ∩ {x: Green(x)}’). So while most likely does implicate representation of
two groups, it could nonetheless be restricted as opposed to relational if the second
group is not independently selected or formed on the basis of an independent selec-
tion. The relevant question is thus not whether most can be stated in restricted terms
but whether evidence can be found that such a hypotheses about what speakers know
when they know the meaning of most is preferred over a genuinely relational alterna-
tive.

In future work, we hope to find an empirical signature that reflects the differ-
ence between two independent selections from the domain that are intersected and a
second selection made from an initially restricted domain (relatedly, see fn. 5). A po-
tentially related question for future work is how the proposed representations connect
to complex anaphora (e.g., Moxey and Sanford 1993; Sanford et al. 1996; Paterson
et al. 1998). For example, in (11a), they is anaphoric to the fans who left, and in (11b),
they is anaphoric to the fans who didn’t attend.

(11) a. Most fans left the game early, they were tired.
b. Few fans went to the game, they watched at a bar.

As on traditional views (including Generalized Quantifier Theory and dynamic
approaches), we do not assume that the proposed meanings of quantifiers obviate the
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need for a theory of anaphora (e.g., Kamp and Reyle 1993; Nouwen 2010). In par-
ticular, reference to the restricted domain as a group in the meaning representation
does not mark that group as the only target of subsequent anaphora. And while the
group(s) explicitly introduced in the meaning representation may exert some influ-
ence here (Knowlton and Schwarz Forthcoming), we still suspect many of these ef-
fects should instead be explained by additional principles of the discourse pragmatics
(e.g., Kibble 1997; Hendriks and de Hoop 2001; Nouwen 2003; Zulaica-Hernández
2018). In any case, we do not mean to suggest that only the group(s) implicated by
the quantifier meaning is represented at any point.

Setting aside these future directions, at least the main prediction of the restricted
quantification view is clear: quantificational determiners should encourage partici-
pants to treat their two grammatical arguments asymmetrically. In addition to con-
firming this main prediction as it pertains to other kinds of quantifiers, it is necessary
to broaden the empirical landscape to other languages. It is, of course, always pos-
sible that the present results reflect a quirk of English and will ultimately generalize
no further than the cases thus far tested. To guard against this possibility, we are cur-
rently working to replicate these results in other languages, including Mandarin and
Italian. In the meantime, we hope that by testing, and confirming, the predictions of
the restricted view in one case, we have provided initial evidence for this hypothesis
in a way that invites and encourages further cross-linguistic investigation.

5 Conclusion

A quantificational determiner like every in a sentence like every dog slept is often
taken to express a second-order relation. On this view, the two syntactic arguments—
dog and slept—supply two predicates, and every specifies how the extensions of those
predicates are related. This relational conception of determiners stems, in part, from
important developments in logic. In particular, Frege invented a logic that easily ac-
commodates relations as part of a broader project of reducing arithmetic to logic.
And within linguistics, this relational view has been useful for stating and discover-
ing generalizations, such as the generalization that all determiners are conservative.

But despite often being modeled as expressing relations, quantificational deter-
miners, in our view, are not understood (i.e., mentally represented by speakers) in
relational terms. Instead, they combine with their syntactic complement to form
a monadic quantifier over a restricted domain. The main difference between these
views is how the determiner treats its two grammatical arguments: as serving iden-
tical logical roles (two terms in a relation) or as having distinct roles (restricting the
domain versus providing an additional criterion that some number of domain entities
must meet). This alternative, restricted conception of determiner meanings offers a
simple explanation of the conservativity constraint and of the behavioral findings that
participants treat the determiner’s internal and external arguments in surprisingly dif-
ferent ways (at least in the cases so far tested). More generally, the restricted view of
quantification follows in the linguistic tradition of searching for the most constrained
system consistent with the data, with the aim of limiting overgeneration from the
outset.
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